APPENDIX 3 ASH SAMPLING & ANALYSIS REPORTS

ASH CHARACTERIZATION REPORT MID-CONNECTICUT RESOURCE RECOVERY FACILITY

COVANTA ENERGY GROUP, INC. ENVIRONMENTAL ENGINEERING DEPARTMENT

ENVIRONMENTAL TEST REPORT FOR COVANTA MID-CONN, INC.

RECEIVED

CEG REPORT NO .:

3218

REPORT DATE:

November 12, 2007

ENVIRONMENTAL

PREPARED FOR:

Covanta Mid-Conn, Inc.

PURPOSE:

Characterization of Ash Residue

SAMPLE PERIOD:

June 12 through June 22, 2007

PREPARED BY:

Covanta Energy Group, Inc.

Department 14 - CEM/Emissions Testing

FICKLING MIDCTREPOT 2nd

ASH RESIDUE CHARACTERIZATION REPORT FOR COVANTA MID-CONN, INC.

TABLE OF CONTENTS

SECTION	SUBJECT
1	INTRODUCTION
2	FIELD ASH SAMPLING PROCEDURES
3	LABORATORY INFORMATION
4	ASH SUBSAMPLE PREPARATION
5	ANALYTICAL PROCEDURES
6	DATA ANALYSIS AND CONCLUSION
TABLES	•
1	Field Ash Sample Schedule And Bulk Characteristics
2	Analytical Test Procedures
3	Laboratory Results and Statistics
4	Comparison of SW-846 Statistical Results and Regulatory
	Thresholds for Metal Analytes
APPENDICES	
Α	Laboratory and QA/QC Results and
	Bulk Sample Characteristics

FICKLINGWIDCTREP07.2nd MIDCT REPORT H03218

- ŧ

1.0 INTRODUCTION

An ash residue characterization program (Program) was implemented at the Covanta Mid-Conn, Inc. Facility (Facility) located in Hartford, Connecticut. The Program was designed to incorporate the sampling and analytical procedures in EPA's May 24, 1994 draft guidance document "Sampling and Analysis of Municipal Refuse Inclinerator Ash" ⁽¹⁾ and its supporting document "Test Methods for Evaluating Solld Waste (SW-848). ⁽²⁾ The Program is consistent with the EPA's final guidance on ash sampling. ⁽³⁾ Combined ash was sampled from the inclined conveyor downstream of the pug mill and prior to entering the ash residue building. This location has been determined to be representative of the point of generation and is consistent with the January 25, 1995 EPA decision regarding appropriate ash testing locations for determining toxicity characteristics.

Ash sampling at the Facility was performed by representatives of the Facility between June 12 and June 22, 2007. Fourteen (14) 8-hour shifts are represented by this sample period with each shift being represented by one shift composite subsample, totaling 14 composite subsamples. The shift composite subsamples were delivered to a laboratory for analysis in accordance with the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP), Method 1311, as described in 40 CFR 281, Appendix II. A minimum of one (1) aliquot from each of the fourteen composite subsamples was analyzed, totaling 14 analyses.

2.0 FIELD ASH SAMPLING PROCEDURES

Field sampling occurred over the period between June 12 and June 22, 2007. Field sampling consisted of two phases: 1) acquisition of grab samples, and 2) generation of hourly composite sample and shift composite subsamples.

The grab samples occurred at a 15-minute frequency. Samples were obtained from Inclined Conveyor 5B, which is downstream of the pug mill and upstream of Conveyor 6B, which transports the combined ash into the ash building. A shovel was used to obtain a shovel swipe of the entire conveyor width. The grab sample was then placed in a plastic bucket for the hourly composite. The location and method provided random and representative samples.

Field sampling and compositing are designed around 8-hour shifts. Each 8-hour shift is represented by eight hourly composite samples.

Shift composite samples were created by mixing the hourly composite samples either in a cement mixer or on a plastic sheet or broom clean floor and mixed thoroughly with

FICKLING MEDCTREPO7 2nd MEDCT REPORT NO3218 a shovel. The well-mixed composite material was then spread to create a square of equal depth and was subsequently divided into quarters. Two composite subsamples were created with each composite subsample including a random shovel swipe from each quarter. One (1) composite subsample was labeled and delivered to a laboratory with an accompanying chain-of-custody form, and one (1) was retained on site as a spare.

Table 1 presents a summary of the field sample program scope, schedule and bulk characteristics. The laboratory information used to develop Table 1 is presented in Appendix A. The material listed as being noncrushable was subjected to the EPA size reduction procedures.⁽³⁾

3.0 LABORATORY INFORMATION

3.1 Metals

One shift composite subsample was delivered to Element One, Inc. in Wilmington, North Carolina for each of the 14 operating shifts. This laboratory provided the sample preparation procedures required to reduce the approximate 1 kg. subsamples to representative 100-gram aliquots as required by EPA Method 1311. This laboratory provided the bulk sample characteristics in Table 1, and the analytical scope of services required by EPA Method 1311.

4.0 ASH SUBSAMPLE PREPARATION

Each composite subsample was prepared in accordance with the following steps:

- 1. The entire composite subsample was passed over a two-inch screen. Material passing the 2-inch screen was set aside. Material larger than two inches was struck to determine if it was crushable. If the material did not break, it was weighed and discarded. If it did break and could pass through the two-inch screen, it was recombined with the material naturally less than two inches.
- 2. The material less than two inches was passed over a 3/8-inch screen. Material passing through the 3/8-inch screen was weighed, recorded and set aside. Material larger than 3/8 inch was weighed, recorded and then passed through a crusher device to reduce the material to be less than 3/8 inch. If material could not be crushed by the machine, this material was subjected to the hammer procedure described above. If the material was made to pass the 3/8-inch screen, it was combined with the material that went through the crushing machine. If the material was not reduced to pass through a 3/8-inch screen after the machine and manual

FICKLINGWIDCTREP97.2nd MIDCT REPORT NO3218 crushing step, it was recombined with the material larger than two inches that could not be crushed.

The material naturally less than 3/8 inch and the material which was crushed to be less than 3/8 inch were combined and mixed together very well.

This combined, well-mixed sample was used to prepare the aliquot for TCLP extraction. The remaining material was saved for further analysis, if required.

5.0 ANALYTICAL PROCEDURES

The Toxicity Characteristic Leaching Procedure (TCLP) was performed in accordance with Method 1311 as detailed in the Environmental Protection Agency Manual SW846 - Test Methods for Evaluating Solid Waste - Physical/Chemical Methods. Table 2 presents an overview of the analytical test procedures used in analyzing the TCLP extract from each aliquot. Quality control and assurance procedures used a sample spike, duplicate and blank, at a minimum, on every set of fourteen (14) samples.

6.0 DATA ANALYSIS AND CONCLUSION

6.1 Overview

The laboratory analytical data presented as Appendix A have been evaluated in accordance with the procedures in SW-846, Chapter 9. The quality assurance and quality control results are submitted with the results in Appendix A.

The statistical procedures set forth in Section 9.1.1.2 and Table 91 of SW-846 are based on the set of individual concentrations being treated as a normal distribution.

6.2 Analytical Results

The laboratory analytical results are presented in Table 3 and Appendix A of this report. Laboratory results below the detection limit are used in Table 3 as one half of the detection limit.

An evaluation of the analytical results indicates that the cadmium result for sample ID MIDCT/TCLP/CA/06/18/07-1 and the lead result for Sample ID MIDCT/TCLP/CA/06/12/07-2 are statistical outliers based upon a relative comparison with other data and an evaluation by Chauvenet's Criterion as recommended by the EPA. (4) These outliers could be addressed by analysis of other aliquots from the

FICKLINGWIDCTREPOT.2n

same shift composite subsamples; however, the analysis in this report is limited to statistical reduction of the initial data including these outliers.

6.3 Statistical Results

Table 4 presents a comparison of the Regulatory Threshold for each metal analyte and the relevant SW-846 statistical value for determining whether a waste material exhibits a toxic characteristic. Laboratory results below the detection limit are reported as one half of the detection limit.

6.4 Condusion

The analytical data was evaluated in complete compliance with the procedures set forth and required by SW-846. The statistical evaluation has determined that the waste does not exhibit a hazardous characteristic and that it should be managed as a nonhazardous solid waste.

FICKLING/MIDCTREP07.2ne MIDCT REPORT NO3218

7.0 REFERENCES

- Environmental Protection Agency,
 "Sampling and Analysis of Municipal Refuse Incinerator Ash," (Draft Guidance Document) May, 1994.
- (2) Environmental Protection Agency, "Manual SW-846 - Test Methods for Evaluating Solid Waste -Physical/Chemical Methods," March, 1992.
- (3) Environmental Protection Agency, "Guidance for the Sampling and Analysis of Municipal Waste Combustion Ash for the Toxicity Characteristic," June, 1995.
- (4) Environmental Protection Agency, "Introduction to Environmental Statistics."

FICKLINGWIDCTREP07.2nd MIDCT REPORT NO3218

	FIELD AS	SH SAMPLE S	Table 1 CHEDULE AND BUL	K CHARACTE	RISTICS	
-			Composite Subsar Bulk Characteristic			
Sample	Date	<u>Shifts</u>	Greater than 3/8 inches or Non- crushable Metals	Less than 3/8 Inches	Total	Moisture (as Wt.%)
1	June 12, 2007	2	0.00	0.45	0.45	33.9
2	June 13, 2007	2	0.00	0.80	0.80	26.8
3	June 14, 2007	1	0.00	0.55	0.55	27.5
4	June 14, 2007	2	0.00	0.95	0.95	34.0
5	June 15, 2007	1	0.00	0.80	0.80	34.6
6	June 18, 2007	1	0.00	1.05	1.05	34.8
7	June 18, 2007	2	0.00	0.95	0.95	33.6
8	June 19, 2007	1	0.00	1.05	1.05	33.9
9	June 19, 2007	2	0.00	1.05	1.05	35.7
10	June 20, 2007	1	0.00	1.00	1.00	30.0
11	June 20, 2007	2	0.00	1.15	1.15	27.1
12	June 21, 2007	1	0.00	0.95	0.95	28.7
13	June 21, 2007	2	0.00	1.00	1.00	29.7
14	June 22, 2007	1	0.00	0.95	0.95	24.8

FICKLING MIDCTREPO7.2nd MIDCT REPORT NO3218

		ble 2 ST PROCEDURES
PAR	AMETER	ANALYTICAL METHOD (b)
1.0	TCLP (a)	
1.1	TCLP Metals	
	Arsenic	6010 (ICP)
	Barium	6010 (ICP)
	Cadmium	6010 (ICP)
	Chromium	6010 (ICP)
	Lead	6010 (ICP)
	Mercury	7470 (CVAA)
	Selenium	6010 (ICP)
	Silver	6010 (ICP)
2.0	Moisture	2540-G
(a)	EPA Method 1311, Toxic Characteriz	ation Leaching Procedure.
(b)	ICP : Inductively Coupled Plasm CVAA : Cold Vapor Atomic Absorp	· · · · · · · · · · · · · · · · · · ·

FICKLINGWIDCTREP07.2nd MIDCT REPORT NO3218

TABLE 3 LABORATORY RESULTS FOR THE MID-CONNECTICUT RESOURCE RECOVERY VENTURE

3.1 SAMPLE SPECIFIC RESULTS

Colored Colo				
0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250	1	0.67	0.025 < 0.67	v
 0.0250 < 0.0250 <	ò	0.80	0.025 0.80	
 0.0250 < 0.0250 <	9	1.06	0.025 1.06	
 0.0250 < 0.0250 < 0.0250 	6	1.03	0.025	
 0.0250 < 0.0250 <	0	1.00	0.025 1.00	
 0.0250 < 0.0250 <	9	2.09	0.025 2.09	
 0.0250 	35	0.85	0.025 0.85	
 0.0250 < 0.0250 <	ø	96.0	0.025 0.96	
 0.0250 < 0.0250 <	စ	1.19	0.025 1.19	
 0.0250 < 0.0250 <	Ø	0.93	0.025 0.93	
0.0250 < 0.0250 <0.0250 < 0.0250 <	=	1.31	0.025	
< 0.0250 < 0.0250 < (<u>-</u>	1.37	0.025	
	=	1.41	0.025	
0.0250 < 0.0250 < 0.0250 < 0.00400	12	1.00	0.025 1.00	

3.2 STATISTICAL RESULTS

4 6	0.025 0.0E+00 0.0E+00	0.0E+00 0.025	0.025	5.0
4 &	0.127 1.3E-03 3.5E-02	9.5E-03 0.139	0.199 0.072	1.0
4 &	0.00254 1.1E-05 3.3E-03	8.7E-04 0.00372	0.01000	0.2
4 t	0.033 0.001 0.024	0.006	0.111	5.0
<u>4</u> £	0.025 0.0E+00 0.00E+00	0.00E+00 0.025	0.025	6.0
4 &	0.183 0.153 0.392	0.105 0.324	1.420	1.0
4 t	1.12 0.12 0.35	0.09 1.25	2.09	100.0
4 t	0.025 0.0E+00 0.0E+00	0.0E+00 0.025	0.025	5.0
NUMBER OF SAMPLES DEGREES OF FREEDOM	SAMPLE MEAN (XBAR) SAMPLE VARIANCE (S^2) STANDARD DEVIATION (S)	STD ERROR (S XBAR) 80% C! Upper Limit (actual) 80% C! Inner Limit (axtual)	MAXIMUM	3.3 REGULATORY THRESHOLD

(a) Less than symbol (<) indicates laboratory result below the detection limit. The value used in this table is one-half (1/2) of the detection limit provided by the laboratory. 11/12/07

Table 4

COMPARISON OF SW-846 STATISTICAL RESULTS ANDREGULATORY THRESHOLDS FOR METAL ANALYTES

90% Upper Confidence Interval per SW-846 (b)	Regulatory Threshold (a)
0.025	5.0
1.25	100.0
0.324	1.0
0.025	5.0
0.042	5.0
0.000372	0.2
0.139	1.0
0.025	5.0
	(b) 0.025 1.25 0.324 0.025 0.042 0.000372 0.139

- (a) 40 CFR Part 261. All units are expressed as milligrams per liter (mg/L).
- (b) 90% Upper Confidence Interval as a single-tailed distribution is equivalent to an 80% Upper Confidence Interval as a two-tailed distribution.

FICKLINGMIDCTREPO7.2nd MIDCT REPORT NO3218

APPENDIX A

Laboratory and QA/QC Results And Bulk Sample Characteristics

Phone: 910 793-0123 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

14 Day Characterization Study - SUMMARY OF TCLP ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 02, 2007 Client Project Name Covanta Mid-Conn Client Project Number June 12-15, 2007 PO Number

Sample # Sample Matrix Date Comp Delivered by Page 1 of 1 Extraction Begun	Limed Ash June 12-19 UPS 1400 06/2	5, 2007	Sample ID Sample Type Time Sampled Sampler E1 Sample # Extraction Ended	June 12-15, 200 Comp 9295-1-5 0800 06/22/07	07 1-5 Date Reco Time Reco Received Blank Lot	eived 1300 by PDS
Sample ID		9295-	9295-2	9295-3	9295-4	9295-5
Chromium, digested na Selenium, digested na Selenium, digested mg Cadmium, digested mg Cadmium, digested na Lead, digested na Mercury, digested na Solids	ng/L mg/L /L i mg/L g/L	< 0.05 < 0.05 0.072 < 0.05 0.612 0.667 0.111 0.0006 66.1%	 < 0.05 0.096 < 0.05 < 0.05 < 0.05 < 0.05 < 0.004 	< 0.05 < 0.05 0.141 < 0.05 < 0.05 1.06 < 0.05 < 0.0004 66.0%	< 0.05 < 0.05 0.164 < 0.05 < 0.05 1.03 < 0.05 < 0.0004 65.4%	< 0.05 < 0.05 0.084 < 0.05 < 0.05 0.997 < 0.05 < 0.0004 65.4%
pH, Initial check pH, Second check pH, Final Leachate pH, Extraction Fluid Chromium, Spike F	1#2	12.56 11.31 7.72 2.89	11.23	12.64 11.6 8.67 2.89	12.58 11.71 8.72 2.89	12.52 11.64 9.12 2.89
Arsenic, Spike Reconselver, Spik	overy ecovery ecovery ecovery ery			113% 77% 93% 102% 86% 82% 83%		

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-8853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 02, 2007 Client Project Name Covanta Mid-Conn Client Project Number June 12-15, 2007 PO Number

Sample # Sample Matrix Date Comp Delivered by Page 1 of 1 Extraction Begun	Limed Ash June 12-15, 2007 UPS 1400 06/21/07	Sa 7 Tir Sa E1	imple ID imple Ty me Samp impler Sample traction	oled #	MidCt/CA/TC Comp 1430-2230 9295-1 0800 06/22/0		6.12.07/2 Date Received Time Received Received by Blank Lot #1	
Parameter	R	esult	Unit	Dilution	DL		Method	Date
Chromium, digested and Arsenic, digested and Selenium, digested and Cadmium, digested arium, digested and Lead, digested and Mercury, digested and Solids	ng/L < inmg/L C i/L < inmg/L C inmg/L C ng/L C i/L C	0.05 0.072 0.05 0.612 0.667 0.111 0008 66.1	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	5 5 5 5 5 5 5 5 5 5 5 2	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0002	EPA EPA EPA EPA EPA	1311/6020 1311/6020 1311/6020 1311/6020 1311/6020 1311/6020 1311/6020 1311/7470A 1311/160.3	06/28/07 06/28/07 06/28/07 06/28/07 06/28/07 06/28/07 06/28/07 06/30/07 06/21/07
pH, Initial check pH, Second check pH, Final Leachate pH, Extraction Fluid	1	2.56 1.31 7.72 2.89	SU SU SU			E	PA 1311 PA 1311 PA 1311 PA 1311	06/21/07 06/21/07 06/22/07 06/21/07

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 02, 2007 Covanta Mid-Conn Client Project Number June 12-15, 2007 PO Number

Sample Matrix Limed Ash June 12-15, 2007 Sample Type Time Sampled Comp 1430-2215 Date Received 1300 Time Received 1300 Received by PDS Delivered by UPS UPS Sampler E1 Sample # 9295-2 PDS Extraction Begun 1400 06/21/07 EXTraction Ended 1400 06/22/07 Blank Lot #1 Parameter Result Unit Dilution DL Method Date Chromium, digested mg/L Chromium, digested mg/L Selenium, digested mg	Samp ie #		Sa	ample ID	•	MIDCYCAT	CLP/06.13.07/2	
Delivered by	Sample Matrix	Limed Ash	Sa	imple Ty	pe	Comp	Date Receive	d 08/20/07
Page 1 of 1	Date Comp	June 12-15, 20	107 Til	me Sam	pled	1430-2215	Time Receive	ed 1300
Extraction Begun 1400 06/21/07 Extraction Ended 0800 06/22/07 Blank Lot #1 Parameter Result Unit Dilution DL Method Date Chromium, digested mg/L < 0.05	Delivered by	UPS	Sa	mpler			Received by	PDS
Parameter Result Unit Dilution DL Method Date Chromium, digested mg/L < 0.05 mg/L	Page 1 of 1		E1	Sample	#	9295-2		
Chromium, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/6020 01/00/00 Arsenic, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/6020 06/28/07 Selenium, digested mg/L 0.096 mg/L 5 0.01 EPA 1311/6020 06/28/07 Silver, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/6020 06/28/07 Cadmium, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/6020 06/28/07 Barium, digested mg/L 0.801 mg/L 5 0.01 EPA 1311/6020 06/28/07 Barium, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/6020 06/28/07 Lead, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/6020 06/28/07 Mercury, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/6020 06/28/07 Mercury, digested mg/L < 0.004 mg/L 2 0.0002 EPA 1311/7470A 06/30/07 Solids 73.2 % EPA 1311/160.3 06/21/07 PH, Initial check 12.60 SU EPA 1311 06/21/07 PH, Second check 11.23 SU EPA 1311 06/21/07 PH, Final Leachate 7.81 SU EPA 1311 06/22/07	Extraction Begun	1400 06/21/07	E	traction	Ended	0800 06/22/	07 Blank Lot #1	
Arsenic, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Selenium, digested mg/L 0.096 mg/L 5 0.01 EPA 1311/8020 06/28/07 Silver, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Cadmium, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Barium, digested mg/L 0.801 mg/L 5 0.01 EPA 1311/8020 06/28/07 Lead, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Lead, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Mercury, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Mercury, digested mg/L < 0.0004 mg/L 2 0.0002 EPA 1311/7470A 06/30/07 Solids 73.2 % EPA 1311/160.3 08/21/07 PA, Initial check 12.60 SU EPA 1311 08/21/07 PA, Second check 11.23 SU EPA 1311 08/21/07 PA, Final Leachate 7.81 SU EPA 1311 08/22/07	Parameter	•	Result	Unit	Dilution	DL	Method	Date
Arsenic, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Selenium, digested mg/L 0.096 mg/L 5 0.01 EPA 1311/8020 06/28/07 Silver, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Cadmium, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Barium, digested mg/L 0.801 mg/L 5 0.01 EPA 1311/8020 06/28/07 Lead, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Lead, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Mercury, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/8020 06/28/07 Mercury, digested mg/L < 0.0004 mg/L 2 0.0002 EPA 1311/7470A 06/30/07 Solids 73.2 % EPA 1311/160.3 08/21/07 PA, Initial check 12.60 SU EPA 1311 08/21/07 PA, Second check 11.23 SU EPA 1311 08/21/07 PA, Final Leachate 7.81 SU EPA 1311 08/22/07	Chromium, digested	l mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	01/00/00
Silver, digested mg/L < 0.05 mg/L	Arsenic, digested m	g/L [*]	< 0.05		5	0.01	EPA 1311/6020	06/28/07
Cadmium, digested mg/L < 0.05 mg/L 5 mg/L 0.01 mg/L EPA 1311/6020 mg/L 06/28/07 mg/L Barium, digested mg/L 0.801 mg/L 5 mg/L 0.01 mg/L 5 mg/L 0.01 mg/L 0.002 mg/L 0.002 mg/L 0.0002 mg	Selenium, digested	mg/L	0.096	mg/L	5	0.01	EPA 1311/6020	06/28/07
Barium, digested mg/L 0.801 mg/L 5 0.01 EPA 1311/6020 06/28/07 Lead, digested mg/L < 0.05 mg/L 5 0.01 EPA 1311/6020 06/28/07 Mercury, digested mg/L < 0.0004 mg/L 2 0.0002 EPA 1311/7470A 06/30/07 Solids 73.2 % EPA 1311/160.3 06/21/07 PH, Initial check 12.60 SU EPA 1311 06/21/07 PH, Second check 11.23 SU EPA 1311 06/21/07 PH, Final Leachate 7.81 SU EPA 1311 06/22/07	Silver, digested mg/	ſL ¯	< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Lead, digested mg/L < 0.05 mg/L	Cadmium, digested	mg/L	< 0.05	mg/L		0.01	EPA 1311/6020	06/28/07
Mercury, digested mg/L < 0.0004 mg/L 2 0.0002 EPA 1311/7470A 06/30/07 06/21/07 Solids 73.2 % EPA 1311/160.3 06/21/07 pH, Initial check pH, Second check pH, Final Leachate 12.60 SU EPA 1311 06/21/07 pH, Final Leachate 7.81 SU EPA 1311 06/22/07		•	0.801	mg/L		0.01	EPA 1311/6020	06/28/07
Solids 73.2 % EPA 1311/160.3 06/21/07 pH, Initial check 12.60 SU EPA 1311 06/21/07 pH, Second check 11.23 SU EPA 1311 06/21/07 pH, Final Leachate 7.81 SU EPA 1311 06/22/07	, , ,		< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
pH, Initial check 12.60 SU EPA 1311 06/21/07 pH, Second check 11.23 SU EPA 1311 06/21/07 pH, Final Leachate 7.81 SU EPA 1311 06/22/07		ng/L <			2	0.0002	EPA 1311/7470A	06/30/07
pH, Second check 11.23 SU EPA 1311 06/21/07 pH, Final Leachate 7.81 SU EPA 1311 06/22/07	Solids		73.2	%			EPA 1311/160.3	06/21/07
pH, Final Leachate 7.81 SU EPA 1311 06/22/07							EPA 1311	06/21/07
							EPA 1311	06/21/07
pH, Extraction Fluid #2 2.89 SU EPA 1311 06/21/07				-			EPA 1311	06/22/07
	pH, Extraction Fluid	#2	2.89	SU			EPA 1311	06/21/07

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 02, 2007 Covanta Mid-Conn Client Project Number June 12-15, 2007 PO Number

Sample #		S	ample ID)	MidCt/CA/T	CLP/06.14.07/1	
Sample Matrix	Limed Ash	S	ample Ty	/pe	Comp	Date Receive	
Date Comp	June 12-15, 2	2007 Ti	me Sam	pled	0600-1345	Time Receive	d 1300
Delivered by	UPS	S	ampler	•		Received by	PDS
Page 1 of 1		E	1 Sample	e #	9295-3		
Extraction Begun	1400 06/21/0		ktraction		0800 06/22	/07 Blank Lot #1	
Parameter		Result	Unit	Dilution) DL	Method	Date
Chromium, digeste	d mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Arsenic, digested m		< 0.05		5	0.01	EPA 1311/6020	06/28/07
Selenium, digested	mg/L	0.141		5	0.01	EPA 1311/6020	06/28/07
Silver, digested mg		< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Cadmium, digested		< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Barium, digested m		1.06		5	0.01	EPA 1311/6020	06/28/07
Lead, digested mg/		< 0.05		5 2	0.01	EPA 1311/6020	06/28/07
Mercury, digested i		< 0.0004	mg/L	2	0.0002	EPA 1311/7470A	06/30/07
Solids		66.0				EPA 1311/160.3	06/21/07
pH. Initial check		12.64	SU			EPA 1311	06/21/07
pH. Second check		11.60	SU			EPA 1311	06/21/07
pH, Final Leachate		8.67	SU			EPA 1311	06/22/07
pH, Extraction Fluid		2.89				EPA 1311	06/21/07
Chromium, Spike R	Recovery	96	mg/L	5		EPA 1311/6020	06/28/07
Arsenic, Spike Rec	•	113		5		EPA 1311/6020	06/28/07
Selenium, Spike Re		77	_	5		EPA 1311/6020	06/28/07
Silver, Spike Recov		93		5		EPA 1311/6020	06/28/07
Cadmium, Spike Re		102	•	5		EPA 1311/6020	06/28/07
Barium, Spike Reco		86	•	5		EPA 1311/6020	06/28/07
Lead, Spike Recov		82	•	5		EPA 1311/6020	06/28/07
Mercury, Spike Red		83		2		EPA 1311/7470A	06/30/07
mercury, opike nec	wor	03	my L	~			00/00/01

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114

July 02, 2007

Covanta Mid-Conn Client Project Number June 12-15, 2007

PO Number

Sample # Sample Matrix Date Comp Delivered by Page 1 of 1 Extraction Begun	Limed Ash June 12-15 UPS 1400 06/21	Si , 2007 Ti Si E	ample ID ample Ty me Sam ampler 1 Sample draction	/pe pled e #	MidCt/CA/T Comp 1400-2200 9295-4 0800 06/22	Received by	ved 1300 PDS
End deliver boguit	1430 00/21	,,,,	201011	Liliaca	0000 00122	701 DIGITIC LOCH	4
Parameter		Result	Unit	Dilution	DL.	Method	Date
Chromium, digeste		< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Arsenic, digested n	ng/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Selenium, digested	mg/L	0.164	mg/L	5	0,01	EPA 1311/6020	06/28/07
Silver, digested mg	/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Cadmium, digested	l mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Barium, digested m	ng/L	1.03	mg/L	5	0.01	EPA 1311/6020	06/28/07
Lead, digested mg/	1L	< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Mercury, digested r	ng/L	< 0.0004	mg/L	2	0.0002	EPA 1311/7470A	06/30/07
Solids		65.4	%			EPA 1311/160.3	06/21/07
pH, Initial check		12.58	SU			EPA 1311	06/21/07
pH, Second check		11.71	SU			EPA 1311	06/21/07
pH, Final Leachate		8.72	SU			EPA 1311	06/22/07
pH, Extraction Fluid	#2	2.89	SU			EPA 1311	06/21/07

Ken Smith, Laboratory Director

Report compiled by ___

Phone: 910 793-0128 Fax: 910 792-6853 e1iab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 02, 2007 Covanta Mid-Conn Client Project Number June 12-15, 2007 PO Number

Sample #		Sa	imple ID		MidCt/CA/T	CLP/06.15.07/1	
Sample Matrix	Limed Ash	Sa	mpie Ty	pe	Comp	Date Receive	d 06/20/07
Date Comp	June 12-15, 2007	7 Tir	ne Sam	oled	0700-1500	Time Receive	d 1300
Delivered by	UPS	Sa	mpler			Received by	PDS
Page 1 of 1		E1	Sample	#	9295-5	•	
Extraction Begun	1400 06/21/07	Ex	traction	Ended	0800 06/22/	707 Blank Lot #1	
Parameter	R	esult	Unit	Dilution	DL	Method	Date
Chromium, digeste	d ma/L <	0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Arsenic, digested r		0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Selenium, digested	•	.084	mg/L	5	0.01	EPA 1311/6020	06/28/07
Silver, digested ma	•	0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Cadmium, digested		0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Barium, digested m	ng/L (.997	mg/L	5	0.01	EPA 1311/6020	06/28/07
Lead, digested mg/	/Ľ <	0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Mercury, digested	mg/L < 0.4	0004	mg/L	2	0.0002	EPA 1311/7470A	06/30/07
Solids	6	5.4%	%			EPA 1311/160.3	06/21/07
pH, Initial check	1	2.52	SU			EPA 1311	06/21/07
pH, Second check		1.64	SU			EPA 1311	06/21/07
pH, Final Leachate	1	9.12	SU			EPA 1311	06/22/07
pH, Extraction Fluid	d #2	2.89	SU			EPA 1311	06/21/07

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1iab@e1iab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 02, 2007 Covanta Mid-Conn Client Project Number June 12-15, 2007 PO Number

Sample # Sample Matrix Date Comp Delivered by Page 1 of 1 Extraction Begun	Limed Ash June 12-15, 20 UPS 1400 06/21/07	Sa 207 Tir Sa E1	mple ID mple Ty ne Samp mpler Sample traction	oled #	June 12-15, Comp 9295-Blank: 0800 06/22/	Date Receive Time Receive Received by #1	
Extraction begun	1400 00/2 1/0/	_	aouoii	Linco	0000 0002		
Parameter		Result	Unit	Dilution	DL.	Method	Date
Chromium, digeste	d ma/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Arsenic, digested n	•	< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Selenium, digested	•	< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Silver, digested mg		< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Cadmium, digested		< 0.05	mg/L	5	0.01	EPA 1311/8020	06/28/07
Barium, digested m		< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Lead, digested mg/		< 0.05	mg/L	5	0.01	EPA 1311/6020	06/28/07
Mercury, digested i		0.0004	mg/L	2	0.0002	EPA 1311/7470A	06/30/07
pH, Extraction Fluk	i #2	2.89	SU			EPA 1311	06/21/07
Chromium, Spike F	Recovery	102	%	5		EPA 1311/6020	06/28/07
Arsenic, Spike Rec	overy	113	%	5		EPA 1311/6020	06/28/07
Selenium, Spike Ro	•	111	%	5		EPA 1311/6020	06/28/07
Silver, Spike Recov	/ery	101	%	5		EPA 1311/6020	06/28/07
Cadmium, Spike R	ecovery	100	%	5		EPA 1311/6020	06/28/07
Barium, Spike Rec		100	%	5		EPA 1311/6020	06/28/07
Lead, Spike Recov		102	%	5		EPA 1311/6020	06/28/07
Mercury, Spike Red		87	%	2		EPA 1311/7470A	06/30/07

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 02, 2007 Covanta Mid-Conn Client Project Number June 12-15, 2007 PO Number

Sample # Sample ID June 12-15, 2007 1-5 Sample Matrix Limed Ash Sample Type Comp Date Received 06/20/07 Date Comp Time Sampled Time Received 1300 June 12-15, 2007 UPS Received by Sampler PDS Delivered by Page 1 of 1 E1 Sample # 9295-1-5

Sample ID	06/12/07-2	06/13/07-2	06/14/07-1	06/14/07-2	06/15/07-1
Total Sample Weight, Kg	0.45	0.80	0.55	0.95	0.80
Non-crushable sample > 2", Kg	0.00	0.00	0.00	0.00	0.00
Sample < 3/8", Kg	0.45	0.50	0.45	0.65	0.45
Sample > 3/8", Kg	0.00	0.30	0.10	0.20	0.25
> 3/8" non-crushable sample, Kg	0.00	0.00	0.00	0.00	0.00
> 3/8" crushable sample, Kg	0.00	0.30	0.10	0.20	0.25

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES -% MOISTURE Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 02, 2007 Covanta Mid-Conn Client Project Number June 12-15, 2007 PO Number

Sample # Sample Matrix Date Comp	Ash June 12-15, 2007	Sample ID Sample Type Time Sampled	June 12-15, 2007 Comp	1-5 Date Received Time Received	06/20/07 1300
Delivered by	UPS	Sampler		Received by	PDS
Page 1 of 1 Extraction Begun	1400 06/21/07	E1 Sample # Extraction Ended	9295-1-5 0800 06/22/07	Blank Lot #1	

 Sample ID
 9295-1
 9295-2
 9295-3
 9295-4
 9295-5

 % Moisture
 33.9%
 26.8%
 27.5%
 34.0%
 34.6%

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

14 Day Characterization Study - SUMMARY OF TCLP ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 09, 2007

Client Project Name Covanta Mid-Conn Client Project Number June 18-19, 2007

PO Number

Sample #			Sample ID	June 18-19, 20	07 6-9	
Sample Matrix Date Comp Delivered by	Limed Ash June 18-19 UPS	2007	Sample Type Time Sampled Sampler	Comp	Date Received Time Received Received by	06/22/07 0950 DBW
Page 1 of 1			E1 Sample #	9295-6-9	•	
Extraction Begun	1500 06/24	/07	Extraction Ended	0800 06/25/07	Blank Lot #1	
Sample ID		9295-	6 9295-7	9295-8	9295-9	
Chromium, digeste	d mg/L	< 0.0	5 < 0.05	< 0.05	< 0.05	
Arsenic, digested m	ng/L	< 0.05	5 < 0.05	< 0.05	< 0.05	
Selenium, digested	mg/L	0.111	0.128	0.111	0.199	
Silver, digested mg	/L	< 0.0	5 < 0.05	< 0.05	< 0.05	
Cadmium, digested	mg/L	1.42	< 0.05	0.251	< 0.05	
Barium, digested m	g/L	2.09	0.853	0.960	1.19	
Lead, digested mg/	Ĺ	< 0.0	5 < 0.05	0.054	< 0.05	
Mercury, digested r	ng/L	< 0.000	0.0004	< 0.0004	< 0.0004	
Solids		65.2%	66.4%	66.1%	64.3%	
pH, Initial check		11.94	12.15	12.21	12.28	
pH, Second check		8.40	11.21	11.32	11.57	
pH, Final Leachate		6.85	8.54	6.31	8.81	
pH, Extraction Fluid	1#2	2.90	2.90	2.90	2.90	
Chromium, Spike R	ecovery	89%			93%	
Arsenic, Spike Reci	overy	111%	•		112%	
Selenium, Spike Re	covery	100%			98%	
Silver, Spike Recov	ery	89%			82%	
Cadmium, Spike Re	ecovery	83%			94%	
Barium, Spike Reco	very	98%			89%	
Lead, Spike Recove	ery	83%			86%	
Mercury, Spike Rec		77%			75%	

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 09, 2007 Client Project Name Covanta Mid-Conn Client Project Number June 18-19, 2007 PO Number

Sample # Sample Matrix Date Comp Delivered by Page 1 of 1 Extraction Begun	Limed Ash June 18-19, 2 UPS 1500 06/24/0	S 2007 T S E	ample ID ample Ty ime Sam ampler 1 Sample xtraction	rpe pled : #	MidCt/CA/T Comp 9295-6 0800 06/25	CLP/06.18.07/1 Date Receive Time Receive Received by /07 Blank Lot #1	
Parameter		Resul	t Unit	Dilution	DL.	Method	Date
Chromium, digeste	d mall	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Arsenic, digested n	•	< 0.05		5	0.01	EPA 1311/6020	07/05/07
Selenium, digested	-	0.111	-	5	0.01	EPA 1311/6020	07/05/07
Silver, digested mg	•	< 0.05		5	0.01	EPA 1311/6020	07/05/07
Cadmium, digested		1.423		5	0.01	EPA 1311/8020	07/05/07
Barium, digested m	•	2.091	-	5	0.01	EPA 1311/6020	07/05/07
Lead, digested mg/		< 0.05		5	0.01	EPA 1311/6020	07/05/07
Mercury, digested r	mg/L.	< 0.0004	mg/L	2	0.0002	EPA 1311/7470A	07/03/07
Solids	•	65.2	. % ⁻	0	0	EPA 1311/160.3	06/22/07
pH, Initial check		11.94	SU			EPA 1311	06/24/07
pH, Second check		8.40) SU			EPA 1311	06/24/07
pH. Final Leachate		6.85	SU			EPA 1311	06/25/07
pH, Extraction Fluid		2.90	SU			EPA 1311	06/24/07
Chromium, Spike R	Recovery	89	3 %	5		EPA 1311/6020	07/05/07
Arsenic, Spike Rec	•	111	%	5		EPA 1311/6020	07/05/07
Selenium, Spike Re		100	%	5		EPA 1311/6020	07/05/07
Silver, Spike Recov		89	%	5		EPA 1311/6020	07/05/07
Cadmium, Spike Re	ecovery	83	%	5		EPA 1311/6020	07/05/07
Barium, Spike Reco	overy	98		5		EPA 1311/6020	07/05/07
Lead, Spike Recov	ery	83		5		EPA 1311/6020	07/05/07
Mercury, Spike Red	covery	77	%	2		EPA 1311/7470A	07/03/07

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 09, 2007 Covanta Mid-Conn Client Project Number June 18-19, 2007 PO Number

Sample #			mpie ID		MidCt/CA/TCLP/06.18.07/2				
Sample Matrix	Limed Ash	Sa	mple Ty	pe	Comp	Date Receive	d 06/22/07		
Date Comp	June 18-19, 20	07 Tir	ne Sam	pled		Time Receive	d 0950		
Delivered by	UPS	Sa	mpler			Received by	DBW		
Page 1 of 1		€1	Sample	#	9295-7				
Extraction Begun	1500 06/24/07	Ex	traction	Ended	0800 06/25/	07 Blank Lot #1			
Parameter		Result	Unit	Dilution	ı DL	Method	Date		
Chromium, digeste	d ma/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	01/00/00		
Arsenic, digested r		< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Selenium, digested	mg/L	0.128	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Silver, digested mg	/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Cadmium, digested	l mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Banum, digested m	g/L	0.853	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Lead, digested mg/	Ĺ	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Mercury, digested r	ng/L <	0.0004	mg/L	2	0.0002	EPA 1311/7470A	07/03/07		
Solids		66.4	%			EPA 1311/160.3	06/22/07		
pH, Initial check		12,15	SU			EPA 1311	06/24/07		
pH, Second check		11.21	SU			EPA 1311	06/24/07		
pH, Final Leachate		8.54	SU			EPA 1311	06/25/07		
pH, Extraction Fluid	#2	2.90	SU			EPA 1311	06/24/07		

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 09, 2007 Covanta Mid-Conn

Client Project Number June 18-19, 2007

PO Number

Sample # Sample Matrix Date Comp	Limed Ash June 18-19, 20 UPS	Sa 107 Tir	mple ID mple Typ me Samp mpler		MidCt/CA/T Comp	CLP/06.19.07/1 Date Receive Time Receive Received by	
Delivered by Page 1 of 1	UPS		Sample	#	9295-8	Received by	0044
Extraction Begun	1500 06/24/07		traction I		0800 06/25	i/07 Blank Lot #1	ĺ
Parameter		Result	Unit	Dilution	DL	Method	Date
Chromium, digested	i mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Arsenic, digested m		< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Selenium, digested	mg/L	0.111	mg/L	5	0.01	EPA 1311/6020	07/05/07
Silver, digested mg/	/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Cadmium, digested	mg/L	0.251	mg/L	5	0.01	EPA 1311/6020	07/05/07
Barium, digested m	g/L	0.96	mg/L	5	0.01	EPA 1311/6020	07/05/07
1	T .	0001		-	0.04	CD4 4044/0000	07007

Caamium, algestea mg/1.	0.251	mg/L	5	0.01	EPA 1311/6020	UTIODIUT
Barium, digested mg/L	0.96	mg/L	5	0.01	EPA 1311/6020	07/05/07
Lead, digested mg/L	0.054	mg/L	5	0.01	EPA 1311/6020	07/05/07
Mercury, digested mg/L	< 0.0004	mg/L	2	0.0002	EPA 1311/7470A	07/03/07
Solids	66.1	%			EPA 1311/160.3	06/22/07
pH, Initial check	12.21	SU			EPA 1311	06/24/07
pH, Second check	11.32	SU			EPA 1311	06/24/07
pH, Final Leachate	6.31	SU			EPA 1311	06/25/07
pH, Extraction Fluid #2	2.90	SU			EPA 1311	06/24/07

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 09, 2007 Covanta Mid-Conn Client Project Number June 18-19, 2007 PO Number

Sample #		Sa	mple ID		MidCt/CA/T	CLP/06.19.07/2	
Sample Matrix	Limed Ash	Sa	mple Ty	pe	Comp	Date Receive	d 06/22/07
Date Comp	June 18-19, 20	007 Tir	ne Sam	pled		Time Receive	ed 0950
Delivered by	UPS	Sa	mpler			Received by	DBW
Page 1 of 1		E1	Sample	#	9295-9		
Extraction Begun	1500 06/24/07	Ex	traction	Ended	0800 06/25	/07 Blank Lot #1	
Parameter		Result	Unit	Dilution	DL	Method	Date
Chromium, digester	d mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Arsenic, digested m	ng/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Selenium, digested	mg/L	0.199	mg/L	5	0.01	EPA 1311/6020	07/05/07
Silver, digested mg	/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Cadmium, digested	l mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Barium, digested m	g/L	1.19	mg/L	5	0.01	EPA 1311/6020	07/05/07
Lead, digested mg/	Ĺ	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Mercury, digested r		0.0004	mg/L	2	0.0002	EPA 1311/7470A	07/03/07
Solids		64.3	%			EPA 1311/160.3	06/22/07
pH, Initial check		12.28	SU			EPA 1311	06/24/07
pH, Second check		11.57	SU			EPA 1311	06/24/07
pH, Final Leachate		8.81	SU			EPA 1311	06/25/07
pH, Extraction Fluid		2.90	SU			EPA 1311	06/24/07
Chromium, Spike R	tecovery	93	%	5		EPA 1311/6020	07/05/07
Arsenic, Spike Rec	•	112	%	5		EPA 1311/6020	07/05/07
Selenium, Spike Re	•	98	%	5		EPA 1311/6020	07/05/07
Silver, Spike Recov	•	82	%	5		EPA 1311/6020	07/05/07
Cadmium, Spike Re	•	94	%	5		EPA 1311/6020	07/05/07
Barium, Spike Reco		89	%	5		EPA 1311/6020	07/05/07
Lead, Spike Recov		86	%	5		EPA 1311/6020	07/05/07
Mercury, Spike Red		75	%	2		EPA 1311/7470A	07/03/07
mercury, opine rec	~1019	, 5	70	~		CIA 1011/17/08	0,100,01

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 09, 2007 Covanta Mid-Conn Client Project Number June 18-19, 2007 PO Number

Sample #		Sample ID	June 18-19, 2007 6-9			
Sample Matrix	Limed Ash	Sample Type	Comp	Date Received	06/22/07	
Date Comp	June 18-19, 2007	Time Sampled		Time Received	0950	
Delivered by	UPS	Sampler		Received by	DBW	
Page 1 of 1		E1 Sample #	9295-6-9	•		

Sample ID	06/18/07-1	06/18/07-2	06/19/07-1	06/19/07-2
Total Commissions No.	4.05	2.05	4.05	4.05
Total Sample Weight, Kg	1.05	0.95	1.05	1.05
Non-crushable sample > 2", Kg	0.00	0.00	0.00	0.00
Sample < 3/8*, Kg	0.60	0.75	0.60	0.90
Sample > 3/8", Kg	0.30	0.15	0.35	0.15
> 3/8" non-crushable sample, Kg	0.00	0.00	0.00	0.00
> 3/8° crushable sample. Kg	1.05	0.95	1.05	1.05

Ken Smith, Laboratory Director

Report compiled by ___

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES -% MOISTURE Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 09, 2007 Covanta Mid-Conn Client Project Number June 18-19, 2007 PO Number

Sample # Sample Matrix Date Comp Delivered by	Ash June 18-19, 2007 UPS	Sample ID Sample Type Time Sampled Sampler	June 18-19, 20 Comp	07 6-9 Date Received Time Received Received by	ived 0950
Page 1 of 1 Extraction Begun	1500 06/24/07	E1 Sample # Extraction Ended	9295-8-9 0800 06/25/07	Blank Lot #1	5011
Sample ID	9295-	6 9295-7	9295-8	9295-9	
% Moisture	34.89	4 33.6%	33 0%	35 7%	

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

14 Day Characterization Study - SUMMARY OF TCLP ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 08114

July 16, 2007 Client Project Name Covanta Mid-Conn Client Project Number June 20-22, 2007 PO Number

Sample #			Sample	ID.	June 20-22, 200	07 10-14		
Sample Matrix	Limed Ash		Sample	Type	Comp	Date Rec	eived	06/26/07
Date Comp	June 20-22	, 2007		ampled	•	Time Rec	eived	0933
Delivered by	UPS		Sample			Received	by	PDS
Page 1 of 1			E1 San	nple#	9295-10-14		•	
Extraction Begun	1645 06/27	/07	Extract	ion Ended	1045 06/28/07	Blank Lot	#1	
Sample ID		9295-1	0	9295-11	9295-12	9295-13	929	5-14
Chromium, digested	l mg/L	< 0.05	5	< 0.05	< 0.05	< 0.05	. <(0.05
Arsenic, digested m	g/L	< 0.05	5	< 0.05	< 0.05	< 0.05	< (0.05
Selenium, digested	mg/L	0.095	;	0.117	0.165	0.140	0.	150
Silver, digested mg/	L L	< 0.05	5	< 0.05	< 0.05	< 0.05	<(0.05
Cadmium, digested	mg/L	< 0.05	5	< 0.05	< 0.05	< 0.05	< (0.05
Barium, digested my	g/L	0.932	!	1.31	1.37	1.41	0.9	998
Lead, digested mg/l	_	< 0.05	5	< 0.05	< 0.05	< 0.05	<(0.05
Mercury, digested n	ng/L	< 0.00	8	< 0.008	0.010	< 0.008	< 0	.008
Solids		70.0%	5	72.9%	71.3 %	70.3%	75	.2%
pH, Initial check		12.15	;	12.24	12.23	12.35	12	.33
pH, Second check		10.85	,	11.09	11.26	11.65		.21
pH, Final Leachate		8.69		9.43	8.88	9.51		15
pH, Extraction Fluid	#2	2.88		2.88	2.88	2.88		88
Chromium, Spike Re	ecovery				94%			
Arsenic, Spike Reco	very				112%			
Selenium, Spike Re	covery				76%			
Silver, Spike Recove					76%			
Cadmium, Spike Re					92%			
Barium, Spike Reco	very				84%			
Lead, Spike Recove	ry				89%			
Mercury, Spike Reco	overy				80%			

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-5853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 16, 2007 Client Project Name Covanta Mid-Conn Client Project Number June 20-22, 2007 PO Number

	Sample #			Sample	ID	MICCUCA	I CLP/0	6.20.07/1	
Sample Matrix Limed Ash			Sample		Comp		Date Received		
	Date Comp	June 20-22, 20	007 7	Time Sa	ampled			Time Received	
	Delivered by	UPS		Sample	r			Received by	PDS
	Page 1 of 1		- 1	E1 Sam	ple#	9295-10			
	Extraction Begun	1645 06/27/07	' I	Extracti	on Ended	1045 06/28	8/07	Blank Lot #1	
	Parameter		Resu	ılt Uni	t Dilutio	n DL	ı	Method	Date
	Chromium, digested	mg/L	< 0.0	5 mg/	/L 5	0.01	EPA	1311/6020	07/05/07
	Arsenic, digested m	g/L.	< 0.0			0.01	EPA	1311/6020	07/05/07
	Selenium, digested	mg/L	0.09	5 mg/	/L 5	0.01	EPA	1311/6020	07/05/07
	Silver, digested mg/	L	< 0.0	5 mg/		0.01	EPA	1311/6020	07/05/07
	Cadmium, digested	mg/L	< 0.0	5 mg/		0.01	EPA	1311/6020	07/05/07
	Barium, digested me	g/L	0.93	2 mg		0.01	EPA	1311/6020	07/05/07
	Lead, digested mg/l	_	< 0.0	5 mg	/L 5	0.01	EPA	1311/6020	07/05/07
	Mercury, digested n	ng/L ·	< 0.00	8 mg	/L 4	0.0002	EPA	1311/7470A	07/12/07
	Solids	-	70.	0 %	0	0	EPA	1311/160.3	06/28/07
	pH, Initial check		12.1	5 S U			E	PA 1311	06/27/07
	pH, Second check		10.8	5 SU			E	PA 1311	06/27/07
	pH, Final Leachate		8.6	9 SU			E	PA 1311	06/28/07
	pH, Extraction Fluid	#2	2.8	8 SU			E	PA 1311	06/27/07

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 16, 2007 Covanta Mid-Conn Client Project Number June 20-22, 2007 PO Number

Sample #			mple iD	1	MidCt/CA/TCLP/06.20.07/2				
Sample Matrix Limed Ash Date Comp June 20-22, 2		Sample Type			Comp	Date Receive	ed 06/26/07		
		2007 Time Same		pled		Time Receive	ed 0933		
Delivered by	UPS	Sa	mpler	•		Received by	PDS		
Page 1 of 1		E1	Sample	#	9295-11				
Extraction Begun	1645 06/27/07	7 Ex	traction	Ended	1045 06/28	/07 Blank Lot #1			
Parameter		Result	Unit	Dilution	DL	Method	Date		
Chromium, digeste	d ma/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	01/00/00		
Arsenic, digested r	•	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Selenium, digested	•	0.117	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Silver, digested mg	1/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Cadmium, digested		< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Barium, digested n	ng/L	1.31	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Lead, digested mg	/Ľ	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07		
Mercury, digested	mg/L	< 0.008	mg/L	4	0.0002	EPA 1311/7470A	07/12/07		
Solids		72.9	%			EPA 1311/160.3	06/28/07		
pH, Initial check		12.24	SU	-		EPA 1311	06/27/07		
pH, Second check		11.09	SU			EPA 1311	06/27/07		
pH, Final Leachate	•	9.43	SU			EPA 1311	06/28/07		
pH. Extraction Fluid	d #2	2.88	SU			EPA 1311	06/27/07		

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114

July 16, 2007 Covanta Mid-Conn Client Project Number June 20-22, 2007 PO Number

Sample # Sample Matrix Date Comp Delivered by	Limed Ash June 20-22, 20 UPS	S 007 T	ample ID ample Ty ime Sam ampler	/pe	MidCt/CA/T Comp	CLP/06.21.07/1 Date Received Time Received Received by	
Page 1 of 1		E	E1 Sample #		9295-12		
Extraction Begun	1645 06/27/07	E	xtraction	Ended	1045 06/28	07 Blank Lot #1	
Parameter		Result	Unit	Dilutio	n DL	Method	Date
Chromium, digeste	d mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Arsenic, digested n	•	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Selenium, digested	i mg/L	0.165	mg/L	5	0.01	EPA 1311/6020	07/05/07
Silver, digested mg	۷L ٌ	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Cadmium, digested		< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Barium, digested m	ng/L	1.37	mg/L	5	0.01	EPA 1311/6020	07/05/07
Lead, digested mg	/Ľ	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Mercury, digested	mg/L	0.0100	mg/L	4	0.0002	EPA 1311/7470A	07/12/07
Solids		71.3	%	0	0	EPA 1311/160.3	06/28/07
pH, Initial check		12.23	SU			EPA 1311	06/27/07
pH, Second check		11.26	SU			EPA 1311	06/27/07
pH, Final Leachate	}	8.88	SU			EPA 1311	06/28/07
pH, Extraction Fluid	d #2	2.88	SU			EPA 1311	06/27/07
Chromium, digeste	ed mg/L	94	mg/L	5		EPA 1311/6020	07/05/07
Arsenic, digested r	ng/L	112	mg/L	5		EPA 1311/6020	07/05/07
Selenium, digested		76	mg/L	5		EPA 1311/6020	07/05/07
Silver, digested mg		76	mg/L	5		EPA 1311/6020	07/05/07
Cadmium, digested		92		5		EPA 1311/6020	07/05/07
Barium, digested m	ng/L	84	_	5		EPA 1311/6020	07/05/07
Lead, digested mg/	<i>(</i> L	89	mg/L	5		EPA 1311/6020	07/05/07
Mercury, Spike Re	covery	80	mg/L	4		EPA 1311/7470A	07/12/07

Ken Smith, Laboratory Director

Report compiled by _

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 16, 2007 Covanta Mid-Conn Client Project Number June 20-22, 2007 PO Number

Sample #		Sa	emple ID)	MidCt/CA/T(CLP/06.21.07/2	
Sample Matrix	Limed Ash	Sa	imple Ty	/ре	Comp	Date Receive	d 06/26/07
Date Comp	June 20-22, 20	007 Til	me Sam	pled		Time Receive	d 0933
Delivered by	UPS	Sa	mpler	•		Received by	PDS
Page 1 of 1		E1	Sample	e#	9295-13	-	
Extraction Begun	1645 06/27/07	Ex	traction	Ended	1045 06/28/	07 Blank Lot #1	
Parameter		Result	Unit	Dilution	n DL	Method	Date
Chromium, digested	d mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Arsenic, digested m	ng/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Selenium, digested	mg/L	0.140	mg/L	5	0.01	EPA 1311/6020	07/05/07
Silver, digested mg/	/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Cadmium, digested	mg/L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Barium, digested m	g/L	1.41	mg/L	5	0.01	EPA 1311/6020	07/05/07
Lead, digested mg/l	L	< 0.05	mg/L	5	0.01	EPA 1311/6020	07/05/07
Mercury, digested n	ng/L ·	< 0.008	mg/L	4	0.0002	EPA 1311/7470A	07/12 <i>/</i> 07
Solids		70.3	%			EPA 1311/160.3	06/28/07
pH, Initial check		12.35	SU			EPA 1311	06/27/07
pH, Second check		11.65	SU			EPA 1311	06/27/07
pH, Final Leachate		9.51	SU			EPA 1311	06/28/07
pH, Extraction Fluid	#2	2.88	SU			EPA 1311	06/27/07

Ken Smith, Laboratory Director

Report compiled by _____

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 16, 2007 Covanta Mid-Conn Client Project Number June 20-22, 2007 PO Number

Sample # Sample Matrix Date Comp Delivered by Page 1 of 1 Extraction Begun	Limed Ash June 20-22, 20 UPS 1645 06/27/07	Sa 007 Tir Sa E1	mple ID mple Ty ne Samp mpler Sample traction	pe pled :#	MidCt/CA/T Comp 9295-14 1045 06/28	CLP/06.22.07/1 Date Receive Time Received by	
Parameter		Result	Unit	Dilution	DL	Method	Date
Chromium, digested Arsenic, digested or Selenium, digested mg Cadmium, digested mg/Barium, digested mg/Mercury, digested or Solids	ng/L mg/L /L mg/L g/L L	< 0.05 < 0.05 0.150 < 0.05 < 0.05 0.998 < 0.05 < 0.008 75.2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0002	EPA 1311/6020 EPA 1311/6020 EPA 1311/6020 EPA 1311/6020 EPA 1311/6020 EPA 1311/6020 EPA 1311/7470A EPA 1311/160.3	07/05/07 07/05/07 07/05/07 07/05/07 07/05/07 07/05/07 07/05/07 07/12/07 06/28/07
pH, Initial check pH, Second check pH, Final Leachate pH, Extraction Fluid	1#2	12.33 11.21 9.15 2.88	SU SU SU			EPA 1311 EPA 1311 EPA 1311 EPA 1311	06/27/07 06/27/07 06/28/07 06/27/07

Ken Smith, Laboratory Director

Report compiled by _____

Element One Inc. 5022-C Wrightsville Ave. Wilmington, NC 28403

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 16, 2007 Covanta Mid-Conn Client Project Number June 20-22, 2007 PO Number

Sample #		Sample ID	June 20-22, 2007	7 10-14	
Sample Matrix	Limed Ash	Sample Type	Comp	Date Received	06/26/07
Date Comp	June 20-22, 2007	Time Sampled		Time Received	0933
Delivered by	UPS	Sampler		Received by	PDS
Page 1 of 1		E1 Sample #	9295-10-14	•	

Sample ID	06/20/07-1	06/20/07-2	06/21/07-1	06/21/07-2	06/22/07-1
•	*******			******	
Total Sample Weight, Kg	1.00	1.15	0.95	1.00	0.95
Non-crushable sample > 2", Kg	0.00	0.00	0.00	0.00	0.00
Sample < 3/8", Kg	0.95	0.95	0.95	1.00	0.90
Sample > 3/8", Kg	0.00	0.20	0.00	0.00	0.00
> 3/8" non-crushable sample, Kg	0.00	0.00	0.00	0.00	0.00
> 3/8" crushable sample, Kg	0.00	0.20	0.00	0.00	0.00

Ken Smith, Laboratory Director

Report compiled by _____

Certifications: NJ NELAP NC016, NY ELAP 11889, NC DW 37788 and NC DWQ DENR 604

Element One Inc. 5022-C Wrightsville Ave. Wilmington, NC 28403

Phone: 910 793-0128 Fax: 910 792-6853 e1lab@e1lab.com

elementOne

FINAL REPORT OF ANALYSES -% MOISTURE Element One, Inc. Project Number e9295

Todd Wheeler Covanta Mid-Conn Reserve Road Gate 20 Hartford, CT 06114 July 16, 2007 Covanta Mid-Conn

Client Project Number June 20-22, 2007

PO Number

Sample # Sample ID June 20-22, 2007 10-14 Sample Matrix Ash Sample Type Comp Date Received 06/26/07 Date Comp June 20-22, 2007 Time Sampled Time Received 0933 Delivered by UPS Sampler Received by PDS Page 1 of 1 E1 Sample # 9295-10-14 Extraction Begun 1645 06/27/07 **Extraction Ended** 1045 06/28/07 Blank Lot #1 Sample ID 9295-10 9295-11 9295-12 9295-13 9295-14 % Moisture 30.0% 27.1% 28.7% 29.7% 24.8%

Ken Smith, Laboratory Director

Report compiled by _____

Certifications: NJ NELAP NC016, NY ELAP 11889, NC DW 37788 and NC DWQ DENR 604

ASH CHARACTERIZATION REPORT WALLINGFORD RESOURCE RECOVERY FACILITY

COVANTA ENERGY GROUP, INC. ENVIRONMENTAL ENGINEERING DEPARTMENT

ENVIRONMENTAL TEST REPORT FOR COVANTA WALLINGFORD ASSOCIATES, INC. RECEIVED

OEG REPORT NO .:

3219

REPORT DATE:

November 12, 2007

CRRA ENVIRONMENTAL

PREPARED FOR:

Connecticut Resource Recovery Authority

PURPOSE:

Characterization of Ash Residue

SAMPLE PERIOD:

September 27 through October 7, 2007

ASSOCIATED

REPORTS:

EPA's Guidance Document

PREPARED BY:

Covanta Energy Group, Inc.

Department 14 - CEM/Emission Testing

Fickling\Walrep07.3rd

1

ASH RESIDUE CHARACTERIZATION REPORT FOR COVANTA WALLINGFORD ASSOCIATES, INC.

TABLE OF CONTENTS

SECTION	SUBJECT
1	INTRODUCTION
2	FIELD ASH SAMPLING PROCEDURES
3	LABORATORY INFORMATION
4	ASH SUBSAMPLE PREPARATION
5	ANALYTICAL PROCEDURES
6	DATA ANALYSIS AND CONCLUSION
TABLES	
1	Field Ash Sample Schedule and Bulk Characteristics
2	Analytical Test Procedures
3	As-Received Results and Statistics
4	Comparison of SW-846 Statistical Results and Regulatory Thresholds
	for Metal Analytes
APPENDICES	
Α	Laboratory Analytical and QA/QC Results and
	Bulk Sample Characteristics

Fleating Walrap07.3rd

1.0 INTRODUCTION

An ash residue characterization program (Program) was implemented at the Wallingford Resource Recovery Facility (Facility) located in Wallingford, Connecticut. The Program was designed to incorporate the sampling and analytical procedures in EPA's May 24, 1994 document "Sampling and Analysis of Municipal Refuse Incinerator Ash" (1) and its supporting document "Test Methods for Evaluating Solid Waste (SW-846). (2) The Program is consistent with the EPA's Final Guidance on ash sampling. (3) Combined ash was sampled at the end of the drag conveyors and before the roll-off container. This location has been determined to be representative of the point of generation in that it represents the waste characteristics as it would be disposed of at a landfill. The location is also consistent with the January 25, 1995 EPA decision regarding the appropriate testing location for determining toxicity characteristics.

Ash sampling at the Facility was performed by representatives of the Facility between September 27 and October 7, 2007. Ten (10) 8-hour shifts are represented by this sample period with each shift being represented by a shift composite subsample. Subsamples from the shift composite subsamples were delivered to a laboratory for analysis in accordance with the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP), Method 1311, as described in 40 CFR 261, Appendix II.

2.0 FIELD ASH SAMPLING PROCEDURES

Field sampling occurred over the period between September 27 and October 7, 2007. Field sampling consisted of two phases: 1) acquisition of grab samples, and 2) generation of hourly composite sample and shift composite subsamples.

The grab samples occurred at a 10 to 15-minute frequency. Samples were obtained at the end of the drag conveyors and before the roll-off container. The grab sample was obtained by a full width swipe with a bucket as the ash fell from the end of the drag chain conveyor. The grab sample was then placed in a plastic bucket for the hourly composite. The location and method provided random and representative samples. A shift is represented by at least eight hourly composite samples.

Shift composite samples were created by mixing the hourly composite samples with a shovel on a plastic tarpaulin or by using a cement mixer. The composite material was

Ficking/Water073r Rennt No 3219 spread to create a square of equal depth and was subsequently divided into quarters. Two composite subsamples were created from the composite sample with each composite subsample including random shovel swipes from each quarter. One composite subsample was labeled and delivered to a laboratory with an accompanying chain-of-custody form, and one retained on site as a spare. Sample aliquots for laboratory analysis were prepared from the laboratory subsample as described in the next section.

Table 1 presents a summary of the field sample program scope, schedule and bulk characteristics. The laboratory data used to develop Table 1 is provided as Appendix A. The material listed as being noncrushable was subjected to a field test for determining if the material was crushable.

3.0 LABORATORY INFORMATION

3.1 Metals

One shift composite subsample was delivered to Life Science Laboratories, Inc. (LSL), formerly O'Brien and Gere Laboratories, Inc. located in East Syracuse, New York for each of the 10 operating shifts. This laboratory provided the sample preparation procedures required to reduce the approximate 2 to 4 lb. subsamples to representative 100 gram aliquots as required by EPA Method 1311. This laboratory provided the bulk sample characteristics in Table 1, and the analytical scope of services required by EPA Method 1311.

4.0 ASH SUBSAMPLE PREPARATION

One composite subsample from each shift was prepared in accordance with the following steps:

The entire composite subsample was passed over a two-inch screen. Material
passing the 2-inch screen was set aside. Material larger than two inches was
struck to see if it could be crushed. If the material did not break, it was weighed
and discarded. If it did break and could pass through the two-inch screen, it was
recombined with the material naturally less than two inches.

Fichling\Walrep07.3rd

2. The material less than two inches was passed over a 3/8-inch screen. Material passing through the 3/8-inch screen was weighed, recorded and set aside. Material larger than 3/8 inch was weighed, recorded and then passed through a crusher device to reduce the material to be less than 3/8 inch. The mechanical crushing step was repeated two times to maximize the amount of 3/8-inch material that would be included in the aliquot destined for extraction. If the material was made to pass the 3/8-inch screen, it was combined with the material which went through the machine. If the material was not reduced to pass through a 3/8-inch screen after the machine and manual crushing step, it was recombined with the material larger than two inches that could not be crushed and then weighed.

The material naturally less than 3/8 inch and the material which was crushed to be less than 3/8 inch were kept separate from each other and separately weighed and recorded.

 Aliquots for TCLP extraction were prepared by mixing proportional amounts of the material naturally less than 3/8 inch and material which had to be processed to be less than 3/8 inch. Each aliquot for TCLP extraction weighed a minimum of 100 grams.

5.0 ANALYTICAL PROCEDURES

The Toxicity Characteristic Leaching Procedure (TCLP) was performed in accordance with Method 1311 as detailed in the Environmental Protection Agency Manual SW-846 - Test Methods for Evaluating Solid Waste - Physical/Chemical Methods. Table 2 presents an overview of the analytical test procedures used in analyzing the TCLP extract from each aliquot. Quality control and assurance procedures used a sample spike, duplicate and blank on the set of ten (10) samples identified for metals analysis.

6.0 DATA ANALYSIS AND CONCLUSION

Picking Welrep07.3rd Report No. 3219

6.1 Overview

The laboratory analytical data presented as Appendix A have been evaluated in accordance with the procedures in SW-846, Chapter 9. The quality assurance and quality control results are also submitted as Appendix A.

The statistical procedures set forth in Section 9.1.1.2 and Table 9-1 of SW-846 are based on the set of sample concentrations being treated as a normal distribution.

6.2 Analytical Results

The laboratory analytical results are presented in Table 3 and Appendix A of this report. Laboratory results below the detection limit are included in all calculations at one-half of the detection limit in Table 3.

An evaluation of the analytical results indicates that the cadmium result for Sample ID Number WAL/TCLP/CA/09-27-07/1B is a statistical outlier based upon a relative comparison with other data and an evaluation by Chauvenet's Criterion as recommended by EPA. This outlier could be addressed through analysis of other aliquots from the same shift composite subsample; however, the analysis in this report is limited to statistical reduction of the initial data including this outlier.

6.3 Statistical Results

Table 4 presents a comparison of the Regulatory Threshold for each metal analyte and the relevant SW-846 statistical value for determining whether a waste material exhibits a toxic characteristic. If the laboratory result was below the detection limit, a value equal to one half of the detection limit was used.

6.4 Conclusion

The analytical data presented in Appendix A was evaluated in complete compliance with the procedures set forth and required by SW-846. The statistical evaluation has determined that the waste does not exhibit the toxicity characteristic and that it should be managed as a nonhazardous solid waste.

Fickling/Walrep07.3rd

7.0 REFERENCES

- Environmental Protection Agency,
 "Sampling and Analysis of Municipal Refuse Incinerator Ash," May, 1994.
- (2) Environmental Protection Agency, "Manual SW-846 - Test Methods for Evaluating Solid Waste -Physical/Chemical Methods, March, 1992.
- (3) Environmental Protection Agency, "Guidance for the Sampling and Analysis of Municipal Waste Combustion Ash for the Toxicity Characteristic," June, 1995.
- (4) Environmental Protection Agency,
 "Introduction to Environmental Statistics."

Fickling/Walrep07 3rd

	Table 1 FIELD ASH SAMPLE SCHEDULE AND BULK CHARACTERISTICS									
					e Subsample cteristics (lbs)				
Sample	<u>Date</u>	Shift	Greater than 2 Inches	Less than 2 Inches	<u>Total</u>	Moisture (as Wt.%)				
1	September 27, 2007	1	0.10	2.70	2.80	33.1				
2	September 27, 2007	2	0.04	3.38	3.42	38.1				
3	September 28, 2007	1	0.06	1.76	1.82	38.2				
4	September 29, 2007	2	0.06	2.38	2.44	38.7				
5	September 29, 2007	1	0.04	3.42	3.46	38.9				
6	September 30, 2007	2	0.06	2.30	2.36	39.7				
7	September 30, 2007	1	0.06	4.18	4.24	38.4				
8	October 2, 2007	1	1.60	2.40	4.00	41.0				
9	October 3, 2007	1	0.00	3.04	3.04	41.4				
10	October 7, 2007	1	0.00	2.16	2.16	40.9				

Proximg/wareput 3rd Report No. 3219

<u>Table 2</u>							
AN	ALYTICAL TEST PROCEDURES						
PARAMETER	ANALYTICAL METHOD (b)						
1.0 TCLP (a)							
1.1 TCLP Metals							
Arsenic	3010 and 6010 (ICP)						
Barium	3010 and 6010 (ICP)						
Cadmium	3010 and 6010 (ICP)						
Chromium	3010 and 6010 (ICP)						
Lead	3010 and 6010 (ICP)						
Mercury	7470 (CVAA)						
Selenium	3010 and 6010 (ICP)						
Silver	3010 and 6010 (ICP)						
2.0 Moisture	2540-G						

(a) EPA Method 1311, Toxic Characterization Leaching Procedure.

(b) ICP : Inductively Coupled Plasma Spectroscopy

CVAA: Cold Vapor Atomic Absorption

Fickling\Webup07 3rd Report No. 3219

TABLE 3 LABORATORY RESULTS FOR THE WALLINGFORD RESOURCE RECOVERY FACILITY

3.1 SAMPLE SPECIFIC RESULTS

11110	-									
	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
	>	>	v	v	×	>	٧	v	V	V
	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
	v	٧	v	>	>	v	v	٧	<u> </u>	v
	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
	> (×	×	×	×	×	v	×	×	Y
	0.250	0.250	0.250	0.250	0.250	0.25	0.250	0.250	0.250	0.250
	v	v	v	v	v	v	v	v	v	Y
	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
	v	v	v	v	v	v	v	v	v	v
	1.100	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
	L	v	v	v	v	v	v	v	v	v
	0.65	0.75	1.00	0.91	66'0	1.10	1.10	98:0	0.81	0.58
	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
	Y	v	v	v	×	v	v	v	v	¥
	/AL/TCLP/CA/ 09-27-07/ 1B	VAL/TCLP/CA/ 09-27-07/ 2B	VAL/TCLP/CA/ 09-28-07/ 1A	WAL/TCLP/CA/ 09-29-07/ 2A	WAL/TCLP/CA/ 09-29-07/ 1A	VAL/TCLP/CA/ 09-30-07/2A	/AL/TCLP/CA/ 09-30-07/ 1A	VAL/TCLP/CA/ 10-02-07/ 1A	VAL/TCLP/CA/ 10-03-07/ 1A	L/TCLP/CA/ 10-07-07/ 1A

3.2 STATISTICAL RESULTS

NUMBER OF SAMPLES	10	Ç	9	õ	9	9	5	5
DEGREES OF FREEDOM	œ	G	o	00	6	σ	6	6
SAMPLE MEAN (XBAR)	0.25	0.80	0.155	0.250	0.25	0.00020	0.050	0.250
SAMPLE VARIANCE (S^2)	0.0E+00	0.03	0.110	0.0E+00	0.00	8.2E-40	5.3E-35	0.0E+00
STANDARD DEVIATION (S)	0.011-00	0.18	0.332	0.00E+00	0.00	2.9E-20	7.3E-18	0.0E+00
STD ERROR (S XBAR)	0.0E+00	90.0	0.105	0.00E+00	00.0	9.0E-21	2.3E-18	0.0E+00
80% CI Upper Limit (actual)	0.250	96.0	0.300	0.250	0.250	0.00020	0.050	0.250
80% CI Upper Limit (exp. of lognom	nal)							
MAXIMUM	0.250	1.10	1.100	0.250	0.250	0.00020	0.050	0,250
MINIMUM	0.250	0.58	0.050	0.250	0.250	0.00020	0.050	0.250
3.3 REGULATORY THRESHOLD	5.0	100.0	1.0	6.0	5.0	0.2	1,0	5.0

(a) Less than symbol (<) indicates laboratory result below the detection limit. The value used in this table is one-half (1/2) of the detection limit provided by the laboratory.

11/12/07

Table 4

COMPARISON OF SW-846 STATISTICAL RESULTS AND REGULATORY THRESHOLDS FOR METAL ANALYTES

Analyte	90% Upper Confidence Interval per SW-846 (b)	Regulatory Threshold (a)
Metals		·
Arsenic	0.250	5.0
Barium	0.96	100.0
Cadmium	0.300	1.0
Chromium	0.250	5.0
Lead	0.250	5.0
Mercury	0.00020	0.2
Selenium	0.050	1.0
Silver	0.250	5.0

- (a) 40 CFR Part 261. All units are expressed as milligrams per liter (mg/L).
- (b) 90% Upper Confidence Interval as a single-tailed distribution is equivalent to an 80% Upper Confidence Interval as a two-tailed distribution.

rickung/weirepu/ "in Report No. 3219

APPENDIX A

Laboratory Analytical and QA/QC Results and Bulk Sample Characteristics

5000 Brittonfield Parkway, Suite 200 East Syracuse, NY 13057

(315) 437-0200

Monday, November 05, 2007

Mr. Daryll Fickling Covanta Energy Corporation 40 Lane Road-CN2615 Fairfield, NJ 07007-2615

TBL: (973) 882-7045

Project: WALLINGFORD

RE: Analytical Results

Order No.: 0710055, 0710081

Dear Mr. Daryll Fickling:

Life Science Laboratories, Inc. received samples on 10/8/2007-10/11/2007 for the analyses presented in the following report.

Very truly yours, Life Science Laboratories, Inc.

Montes Landeren

Monika Santucci Project Manager

Analytical Results

SL 5006 Brittonfield Parkway, Suite 200 (315) 437-0200

East Syracuse, NY 13057

StateCertNe: PH0634

CLIENT: Covente Energy Corporation
Project: Walkingford

W Order: 0710055

Matrix: Inst. ID;

ASH ICAP 61E ColumnID:

Revision: 10/19/07 14:56

Sample Size: 10 mL %Moisture: 33.1 TestCode TCLPICP Lab ID: **0710055-001**A
Client Sample ID: WAL/CA/TCLP/9-27-07/18 Cellection Date:

Date Received:

PrepDate:

BatchNo:

FileID:

09/27/07 0:00

10/08/07 11:55 10/11/07 0:00 6353/R11518 1-SAMP-30730

Col Type:						
Analyte	Result Qu	al PQL	Units DF		Date Analyzed	
TCLP METALS BY ICP			\$W6010B		(SW3010A)	
Areenic	ND	0.50	mg/L	1	10/16/07 18:37	
Berlum	0.65	0.50	mg/L	1	10/16/07 18:37	
Cadmium	1.1	0.10	mg/L	1	10/16/07 18:37	
Chromium	ND	9.60	mg/L	1	10/16/07 18:37	
Lead	ND	0.50	mgft.	1	10/16/07 18:37	
Selenium	ND	0.10	mg/L	1	10/16/07 18:37	
Silver	ND	0.50	mg/L	1	10/16/07 18:37	

Qua	ä	í	ers:	

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analysis detected below the PQL
- P Print, Conf. column %D or RPD exceeds lievit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded ND Not Detected at the Practical Quantilation Limit (PQL)
- S Spiks Recovery outside accepted recovery limits

Print Date: 10/29/07 14:42

312027

Project Supervisor: Monlica Santucci

Page 1 of 21

Analytical Results

SL 5006 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057 (315) 437-0200 StateCertNo: PH0634

Project:

CLIENT: Coventa Energy Corporation

Wallingford

W Order: 0710055 ASH

Matrix: inst. ID: FIMS 100 ColumnID:

Revision: 10/19/07 16:47

Lab ID: Collection Date: Date Received:

PrepiDate: BatchNo:

FileID:

0710055-001A Client Sample ID: WALJCATCLP/9-27-47/18 09/27/07 0:00

10/08/07 11:55 10/18/07 0:00 6399/R11556 I-SAMP-

Col Type: Analyte

Result Qual PQL

Sample Size: 25 mL . %Moisture: 33.1

TestCode TCLPHG

Units 5W1311/7470A

DF

(SW7470A)

TCLP MERCURY Mercury

ND

0.00040

mg£

10/19/07 11:33

Date Analyzed

Qualifiers:

- Value exceeds Maximum Contaminant Level
- B Value exceeds the instrument calibration range
- J Analyse detected below the PQL
- P Prim./Conf. column ND or RPD preceds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Fractical Quantitation Limit (PQL) S Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci

Page 2 of 21

Analytical Results

SL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: PH0634

CLIENT: Covents Energy Corporation Project:

Wallingford

Matrix: Inst. ID: ColumnID:

W Order: 0710055 ASH ICAP 61E

Sample Size: 10 mL %Moisture: 38.1 Revision: 10/19/07 14:56 TestCode TCLPICP Collection Date:

FileID:

Date Received: PrepDate: BatchNo:

Lab ID: 0710055-002A Client Sample ID: WALVCATCLP9-27-07/2B

09/27/07 0:00 10/08/07 11:55 10/11/07 0:00 6353/R11518 1-SAMP-30738

Col Type:			,,,,,,,,,,,,,		
Analyte	Result Qu	al PQL	Valts	DF	Date Analyzed
TCLP METALS BY ICP			8W5010B		(SW3010A)
Americ	ND	0.50	mg/L	1	10/16/07 19:13
Berlum	0.75	0.50	mgit	1	10/16/07 19:13
Cadmium	ND	0.10	mg/L	1	10/16/07 19:13
Chromium	ND	0.50	mg/L	1	10/16/07 19:13
Lead	ND	0.50	mgA.	1	10/19/07 19:13
Selenium	ND	0.10	mg/L	1	10/16/07 19:13
Siver	ND	0.50	mg/L	1	10/16/07 10:13

- Value exceeds Maximum Contr
- 5 Value exceeds the instrument outilization range J Analyte detected below the POL
- P Print/Conf. column ND or RPD exceeds limit
- B Analyte detected in the maccieted Method Blank
- H Holding tissus for propuration or mulysis aspended
- ND Not Detected at the Practical Quantitation Limit (PQL)
- 3 Spike Recovery outside accepted recovery limits

Print Date: 10/29/07 14:42

312035

Project Supervisor: Monika Santucci

Page 5 of 21

Analytical Results

SI, 5000 Brittanfield Parkway, Suits 200 (315) 437-0200

East Syracuse, NY 13057

StateCortNo: PH0634

CLIENT: Coventa Energy Corporation Project:

Wallingford W Order: 0710055

Matrix: ASH Inst. 10: FIMS 100

ColumnID: Revision: 10/19/07 16:47 Lab ID: 0710055-002A Client Sample ID: WAL/CA/TCLP/9-27-07/28

Collection Date: Date Received: PrepDate: BatchNo:

FileID:

09/27/07 0:00 10/08/07 11:55 10/18/07 0:00 6399/RJ1556 1-SAMP-

DF

Col Type: Analyte

Result Qual PQL

Sample Size: 25 ml. %Moisture: 38.1

TestCode TCLPHG

SW1311/7470A

(8W7470A)

TCLP MERCURY Mercury

NO 0.00040 mg/L

Units

10/19/07 11:40

Date Applyzed

Qualifiers:

- Value concede Maximum Contaminant Laval
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Print/Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- S Spike Recovery outside accepted recovery limits

Print Date: 10/29/07 14:42

312790

Project Supervisor: Monika Santucci

Page 6 of 21

Analytical Results

SL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

TestCode TCLPICP

StateCertNe: PH0634 0710055-003A

CLIENT: Covanta Energy Corporation Project: Wallingford W Order: 0710055

Matrix: ASH Inst. ID: ICAP 61E ColumnID:

Revision: 10/19/07 14:56

Date Received: PrepDate: Sample Size: 10 mL %Moisture: 38.7 BatchNo: FileLD:

Lab ID:

Collection Date: 09/29/07 0:00 10/08/07 11:55 10/11/07 0:00 6353/R11518 1-SAMP-30739

Client Sample ID: WALACA/TCLP/9-29-07/1A

Col Type:

Analyte	Rasult Qu	al PQL	Unita	DF	Date Analyzed
TCLP METALS BY ICP			5W6010B		(SW3010A)
Arsenic	ND	0.50	mg/L	1	10/16/07 19:17
Beium	0.91	0.50	mg/L	1	10/16/07 19:17
Cadmium	NO	0.10	mg/L	1 ,	10/16/07 19:17
Chromium	NO	0.50	mg/L.	1./	10/16/07 19:17
Lead	NO	0.60	mgL	1	10/16/07 19:17
Selenium	ND	0.10	mg/L	1	10/16/07 19:17
Silver	ND	0.50	mg/L	1	10/16/07 19:17

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyte districted in the associated Mathod Blank
- H Holding times for preparation or analysis accounted ND Not Detected at the Practical Quantitation Limit (PQL)
- 5 Spike Recovery outside accepted recovery limits

Print Date: 10/29/07 14:42 312036 Project Supervisor: Monika Santucci Page & of 21

Analytical Results

East Syracuse, NY 13057

(315) 437-9200

StateCertNe: PH0634 0710055-003A

CLIENT: Covente Energy Corporation
Project: Wallingford

W Order: 0710055

Matrix: ASH last ID: FIMS 100

CommaID: Revision: 10/19/07 16:47

Date Received: PrepDate: Sample Size: 25 mL BatchNo: %Moisture: 38.7 TestCode TCLPHG FileID:

Client Sample ID: WAL/CA/TCLP/9-29-07/1A Collection Date: 09/29/07 0:00 10/08/07 11:55

10/18/07 0:00 6399/R11556 1-SAMP-

DF

Analyte

Result Qual PQL

Units 6W1311/7470A

Lab ID:

(8W7470A)

TCLP MERCURY Mercery

Col Type:

HO 0.00040 mg/L,

10/19/07 11:42

Date Analyzed

Qualiforn:

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument colibration range
- J Analyte detected below the PQL
- P Prim./Conf. culumn %D or RPD exceeds limit
- B Analyte detected in the maccisted Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- S Spike Recovery sutside accepted recovery limits

Print Dute: 10/29/07 14:42

312791

Project Supervisor: Monika Santucci

Page 9 of 21

Life Science Laboratories, Inc. SL 5000 Brittonfield Parkway, Suite 200

Analytical Results

Kast Syracuse, NY 13057

(315) 437-0200

StateCertNo: PH0634

CILIENT: Covente Energy Corporation Project: Wallingford

W Order: 0710055 Matrix: ASH

last, ID: ICAP 61E

ColumnID: Revision: 10/19/07 14:56 Sample Size: 10 mL %Moistare: 38.9 TestCode TCLPICP Lab ID: 0719055-004A Client Sample ID: WAL/CA/TCLP/9-29-36-07/24

Collection Date: 09/29/07 0:00 10/08/07 11:55 Date Received: PrepDate: 10/11/07 0:00

BatchNo:

FileID:

6353/R11518 1-SAMP-30740

Col Type:

OUT NO POR					
Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
TCLP METALS BY ICP	-		SW6010B		(A010CWS)
Arsenic	ND	0.50	mgf.	1	10/18/07 19:22
Serium	0.99	0.50	mg/L	1	19/16/07 19:22
Cadmium	ND	0.10	mgL	1	10/16/07 19:22
Chromium	ND	0.50	mg/L	1	10/16/07 19:22
Load	ND	9.50	mg/L	1	10/16/07 19:22
Selenium	ND	0.10	mg/L	1	10/16/07 19:22
Silver	ND	0.50	mg/L	1	10/16/07 19:22

Value escends Maximum Conteminent Level

E Value exceeds the instrument calibration range P Print/Conf. column %D or RPD exceeds limit

J Analyte descoted below the PQL

B Analyte detected in the associated Method Blank

H Holding times for proporation or analysis exceeded ND Not Detected at the Practical Quantitation Limit (PQL)

S Spike Recovery outside accepted recovery Hunitz

Print Date: 10/29/07 14:42

312037

Project Supervisor: Monika Sentucci

Page 11 of 21

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-8200

StateCertNo: PH0634

Project:

CLIENT: Covanta Energy Corporation

Lab ID: 0710055-004A

DF

W Order: 0710055

Wallingford

Collection Date: Date Received:

Client Sample ID: WAL/CA/TCLP/9-29-30-07/ZA 09/29/07 0:00

Matrix: last, ID: ColumnID:

ASH **FIMS 100**

Sample Size: 25 ml. %Moisture: 38.9 TestCode TCLPHG

PrepDate: BatchNo: FileID:

10/08/07 11:55 10/18/07 0:00 6399/R11556 1-SAMP-

Revision: 10/19/07 16:47 Col Type:

Analyte

Result Qual PQL

Unite

Date Analyzed

TCLP MERCURY

(BW7470A) 10/19/07 11:48 8W1311/7470A Morcury ND 0.00040 mg/L

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Amilyte detected below the PQL P Print/Conf. column %D or RPD exceeds limit
- B Analyse detected in the seseciated Method Blank
- H Holding times for preparation or analysis excess
- ND Not Detected at the Practical Quantitation Limit (PQL)

S Spike Recovery outside accepted recovery limits

Print Date: 10/29/07 14:42

312794

Project Supervisor: Monika Santucci

Page 10 of 21

Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suito 200

Analytical Results

East Syracuse, NY 13857

(315) 437-0200

Sample Size: 10 ml. %Moisture: 39.7

TestCode TCLPICP

StateCertNo: PH0634

CLIENT: Coventa Energy Corporation Project: Wallingford

W Order: 0710055

Matrix: ASH inst, ID: ICAP 61B

ColumnID: Revision: 10/19/07 14:56 Collection Date: 09/30/07 0:00 Data Received: PropDaté: BatchNo:

Lab ID:

FileID:

9719055-005A Client Sample ID: WALACA/TCLP/9-30-07/1A

10/08/07 11:55 10/11/07 0:00 6353/R11518 1-SAMP-30741

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
TCLP METALS BY ICP			8W6010B		(8W3916A)
Arsenic	NO	0.50	mg/L	1	10/16/07 19:28
Barium	1.1	0.50	mg/L	1	10/16/07 19:28
Cadmium	ND	0.10	mg/L	1	10/16/07 19:28
Chromium	ND	0.50	mg/L	1	10/16/07 19:26
Lasd	NO	0.50	mg/L	1	10/16/07 19:28
Selanium	NO	0.10	mg/L	1	10/15/07 19:26
Sher	ND	0.50	mal	1	10/16/07 19:26

Qualiferr:	•	Value exceeds Maximum Contaminant Level		ì	Analyte detected in the associated Method Blank
•	E	Value exceeds the instrument calibration range	F	ŧ	Holding times for proparation or analysis exceeded
	1	Analyte detected below the PQL	N	D	Not Despeted at the Practical Quantitation Limit (PQL)
	P	Prim./Conf. column %D or RPD exceeds limit		;	Spike Recovery outside excepted recovery limits

Print Date: 10/29/07 14:42

312038

Project Supervisor: Monika Santucci

Page 14 of 21

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: PH0634 0710055-005A

CLIENT: Coventa Energy Corporation

Project: Wallingford

W Order: 0710055 Matrix: ASH

Inst. ID: FIMS 100 ColumnID: Revision: 10/19/07 16:47 Sample Size: 25 mL %Moisture: 39.7 TestCode TCLPHG Ctient Sample ID: WAL/CA/TCLP/9-36-67/1A
Coflection Date: 09/30/07 0:00

Lab ID:

Cellection Date: 09/30/07 0:00
Date Received: 10/08/07 11:55
PrepDate: 10/18/07 0:00
BatchNo: 6399/R11556
FüelD: 1-SAMP-

Col Type:

Analyte Result Qual PQL Units DF Date Analyzed

TCLP MERCURY 8W1311/7470A (8W7476A)

Mercury ND 0.00040 mg/L 1 10/19/07 11:50

Omelifiere

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exception
- ND Not Detected at the Practical Quantitation Limit (PQL)
- S Spike Recovery outside accepted recovery limits

Print Date: 10/29/07 14:42

312795

Project Supervisor: Monika Santucci

Page 15 of 21

Analytical Results

SL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCortNo: PH0634

CLIMNT: Covanta Energy Corporation
Project: Wallingford

W Order: 8710055

Matrix: ASH

last. ID: ICAP 61E ColumnID:

Revision: 10/19/07 14:56

Collection Date:

Date Received: Semple Size: 10 mL %Moisture: 38.4 TestCode TCLPICP

PrepDate: BatckNo: FileID:

Lab ID: 0710055-006A Client Sample ID: WAL/CA/TCLP/9-38-07/2A 09/30/07 0:00

> 10/08/07 11:55 10/11/07 0:00 6353/R11518 1-8AMP-30742

	Col	Ty	pe:
--	-----	----	-----

Analyte	Result Qu	al POL	Units	DF	Date Analyzed
TCLP METALS BY ICP			SW6010B		(8W3019A)
Arsenic	ND	0.50	mg/L	1	10/16/07 19:31
Barlum	1.1	0.50	mg/L	1	10/10/07 19:31
Cadmium	ND	0.10	mg/L	1	10/16/07 19:31
Chromium	ND	0.50	mg/L	1	10/16/07 19:31
Lood	ND	0.50	mg/L	1	10/10/07 19:31
Selenium	NO	0.10	mg/L	1	10/16/07 19:31
Silver	ND	0.50	mg/L	1	19/16/07 19:31

Qualifiers:

B Value exceeds the instrument calibration range

J Analyse detected below the PQL P Prim./Conf. column %D or RPD exceeds limit B Analyte detocted in the empoisted Method Blank

H Holding times for preparation or analysis succe

ND Not Detected at the Practical Quantitation Limit (PQL) S Spike Recovery outside accepted recovery limits

Print Date: 10/29/07 14:42

312039

Project Supervisor: Monika Sentucci

Page 17 of 21

Analytical Results

5000 Brittonfield Parkway, Suite 200

Rast Syracuse, NY 13057

(315) 437-0200

StateCertNo: PH0634

CLIENT: Covanta Energy Corporation
Project: Wallingford

Project: Wallingford W Order: 0710055

Matrix: ASH Inst. ID: FIMS 100 ColumnID:

ColumnID: Revision: 10/19/07 16:47 Sample Size: 25 mL %Moisture: 38.4

TestCode TCLPHG

Lab ID: 6710055-006A Client Sample ID: WAL/CA/TCLP/9-30-07/24

Collection Date: 09/ Date Received: 10/ PrepDate: 10/ BatchNo: 639 FileID: 1-8

09/30/07 0:00 10/08/07 11:55 10/18/07 0:00 6399/R11:56 1-SAMP-

Col Type:			
Analyte	Result Qual PQL	Units DF	Date Analyzed
		### ### ##############################	ACMET ATAAN

Mercury

D 0.00040

8W1311/7470A mg/l. 1 (8W7470A) 10/19/07 11:53

Qualifier

- Value exceeds Maximum Contaminent Level
- E. Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyse detected in the associated Method Blank
- H Holding times for properation or medyels exceeded
- ND Not Detected at the Practical Quentitation Limit (PQL)
- S Spike Recovery outside accepted recovery limits

Print Date: 10/29/07 14:42

312796

Project Supervisor: Monika Santucci

Page 18 of 21

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: PH0634 0710055-007A

CLIENT: Covanta Energy Corporation Projects

Wallingford

W Order: 0710055 ASH Matrix: Inst. ID: ICAP 61E

ColumnID:

Revision: 10/19/07 14:56

Sample Size: 10 mL TestCode TCLPICP

Date Received: PrepDate: %Moisture: 41.0 BatchNo:

FileID:

Lab ID:

Client Sample ID: WAL/CA/TCLP/10-2-07/1A Collection Date: 10/02/07 0:00

> 10/11/07 0:00 6353/R11518 1-SAMP-30743

10/08/07 11:55

Col Type:					
Analyte	Result Qual I	Ŋ٦	Units	DF	Date Analyzed
TCLP METALS BY ICP			8W010B		(8W3010A)
Arsenio	ND	0.50	mg/L	1	10/16/07 19:35
Berlum	0.96	0.50	mg/L	1	10/16/07 19:35
Cadmium	ND	0.10	mg/L	1	10/16/07 18:35
Chromium	NO	0.50	mp/L	1	10/16/07 19:35
Lead	ND	0.60	mg/L	1	10/16/07 19:35
Selentum	NO	0.10	mg/L	1	10/16/07 19:36
Shor	MD	0.50	mos.	1	10/16/07 19:38

Ousliflers:

- Value exceeds Maximum Conteminant Level
- B Value exceeds the instrument calibration rungs
- J Amilyte detected below the PQL P Prim./Conf. column %D or RPD accords limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis as
- ND Not Detected at the Practical Quantitation Limit (PQL)
- S Spike Recovery cutside accepted recovery limits

Print Date: 10/29/07 14:42

312040

Project Supervisor: Monika Santucci

Page 21 of 21

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

StateCertNos PH0634

CLIENT: Covanta Energy Corporation

Lab ID: Client Sample ID: WALACA/TCLP/10-2-07/1A

0710055-007A

Project: W Order: 0710055 Matrix:

Waltingford **ASH** FIMS 100

Collection Date: Date Received: Sample Size: 25 ml. %Moisture: 41.0 PrepDate: BatchNo:

10/02/07 0:00 10/08/07 11:55 10/18/07 0:00 6399/R11556

1-SAMP-

ColumnID: Revision: Amelyte

inst. ID:

10/19/07 16:47 Col Type:

FileID: TestCode TCLPHG

DF

TCLP MERCURY

Result Qual PQL

(315) 437-0200

SW1311/74TGA

Units

(SW7470A)

Mercury

NO 0.00040 mg/L

10/19/07 11:55

Date Analyzed

Value exceeds Maximum Contessinant Level

E Value exceeds the instrument culibration range

J Analyte detected below the PQL

P Print. Conf. column 96D or RPD exceeds limit

B Analyte detected in the associated Method Blank

H. Holding times for properation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

S Spiles Recovery outside accepted secovery finits

Print Date: 10/29/07 14:42

312797

Project Supervisor: Monika Santucci

Page 19 of 21

Analytical Results

5000 Brittenfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0290

StateCertNo: PH0634 0710081-001A

CLIENT: Covanta Energy Corporation Projects Wailingford

W Order: 0710081 Matrix: ash Inst. ID: ICAP 61E

ColumnID: Revision: 10/19/07 16:56 Sample Size: 10 ml. %Moisture: 38.2 TestCode TCLPICP Collection Date: Date Received: PropDate:

BatchNo:

FileID:

Lab ID:

Client Sample ID: WAL/CA/TCLP/9-28-29-07/1A 09/29/07 4:00 10/11/07 10:25 10/17/07 0:00

6394/R11563 1-SAMP-31001

Col Type:

Analyte	Repult Qu	al PQL	Units	DF	Date Analyzed
TCLP METALS BY ICP			5W6010B		(SW3010A)
Arrienic	NÔ	0.50	mg/L	1	10/19/07 13:50
Berken	1.0	0.50	mg/L	1	10/19/07 13:50
Cadmium	ND	0.10	mg/L	1	10/19/07 12:50
Chepmium	ND	0.50	mg/L	1	10/19/07 13:69
Lead	ND	0.50	mg/L	1	10/19/07 13:58
Selenium	ND	0.10	mg/L	1	10/19/07 13:50
Shor	MD	0.50	mgA	1	10/18/07 13:59

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument cultivation range
- J Analyte detected below the PQL P Prim./Conf. column %D or RPD exceeds binit
- B Analyte detected in the associated Method Blank
- H Holding street for preparation or analysis exceeded
- ND Not Detauted at the Practical Quantitation Limit (PQL)
- 8 Spike Recovery outside accepted recovery limits

Print Dute: 10/29/07 14:49

312910

Project Supervisor: Monika Santucci

Page 1 of 9

Analytical Results

SL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-4200

StateCortNo: PH0634

CLIENT: Covanta Energy Corporation Project:

Wallingford W Order: 0710081

Matrix: ASH Inst. ID: FIMS 100

ColumnID:

Revision: 10/19/07 16:47

Sample Stree 25 mL

%Moisture: 38.2

TestCode TCLPHG

NO

Collection Date:

Lab ID:

0710081-001A Client Sample ID: WAL/CA/TCLP/9-28-29-07/1A

09/29/07 6:00 10/11/07 10:25 Date Received: 10/12/07 0:00 PrepDate: BatchNo: 6399/R11556 1-SAMP-FileID:

DF

Col Type:

Mercury

Analyte TCLP MERCURY

0.00040

Result Qual PQL

Units BW1311/7470A

(BW7470A)

Date Analyzed

10/19/07 11:69 mg/L

Qualifiers:

- Value exceeds Meximum Contominant Lovel
- 6 Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column ND or RPD exceeds limit.

B Analyte detected in the associated Method Blank

H Holding times for preparation or sandysis exceeded ND Not Detected at the Practical Quantitation Limit (PQL)

S Spilos Recovery outside accepted recovery Minists

Print Date: 10/29/07 14:49

312799

Project Supervisor: Monika Suntucci

Page 2 of 9

Analytical Results

East Syracuse, NY 13057

(315) 437-9290

Sample Size: 10 mf, %Moisture: 41.4 TestCode TCLPICP

StateCertNe: PH0634

CLIENT: Coverte Energy Corporation Project: Wallingford

W Order: 0710081

Matrix: ash Inst. ID: ICAP 61B

ColumnID: Revision: 10/19/07 16:56 Col Type:

Lab ID:

Date Received: PrepDate: BatchNo:

FileID:

0710081-002A Client Sample ID: WALLACA/TCLP/10-03-07/1A Collection Date: 10/03/07 16:00

10/11/07 10:25 10/17/07 0:00 6398/R11563 1-SAMP-31002

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
TCLP METALS BY ICP			SW40108		(8W3010A)
Areenic	ND	0.50	mg/L	1	10/19/07 14:02
Berlem	0.81	0.50	mg/L	1	10/19/07 14:02
Cadmium	NO	0.10	mg/L	1	10/19/07 14:02
Chromium	ND	0.50	mg/L	1	10/19/07 14:02
Load	ND	0.50	mg/L	1	10/19/07 14:02
Selenium	ND	0.10	mg/L	1	10/19/07 14:02
Silver	ND	0.50	mod.	1	10/19/07 14:02

Qualifiers:	•	Value exceeds !	Anxintura Contain	Lineat Loys)	В	B Analyte detected in the associated Method Blank	~
	E	Value exceeds to	he instrument call	hration range	H	H Holding times for preparation or analysis exceeded	
	ı	Analyte detected	f below the PQL		ND	D Not Detected at the Practical Quantitation Limit (PQL)	
	r	Prim./Conf. cole	ma %D or RPD	cacaeda listif		S Spiles Recovery outside accepted recovery limits	
Print Date: 1	0/2	07 14:49	312911	Project Supervis	er: Mor	oolka Santucci Page 4 of 9	9

LSL Store Science Laboratories, Inc.

Analytical Results

E	ast Syracuse, NY 1	3057 (315) 437-0200		StateCertNo: PH)634
CLIENT: Projects	Coventa Energy Cor Wallingford	poration	Lab ID: Client Sample ID:	0710081-002A WALL/CA/TCL	710-03-07/1A
W Order: Matrix: Inst. ID:	0710081 ASH FIMS 100	Sample Size: 25 ml.	Collection Date: Date Received: PrepDate:	10/03/07 16:00 10/11/07 10:25 10/18/07 0:00	
ColumnID: Revision: Col Type:	10/19/07 16:47	%Moisture: 41.4 TestCode TCLPHG	BatchNo: FileID:	6399/R11556 1-SAMP-	
Analyte		Result Qual PQL	Units	DF :	Date Analyzod
TCLP MER	CURY	_	SW1311/7470	A (89/74	170A)

J Analyse detected below the PQL ND Not Detected at the Practical Quantitation Limit (PQL) P Print/Conf. column %D or RPD exceeds limit S Spike Recovery outside accepted recovery limits

Analytical Results

SL 5000 Brittoniield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: PH0634 0710081-003A

CLIENT: Covents Energy Corporation Project: Waltingford

W Order: 0710081

ASH Matrix Last. ID: ICAP 61E

ColumnID: Revision: 10/19/07 16:56 TestCode TCLPICP

Sample Size: 10 mL %Moisture: 40.9

Data Received: PrepDate:

BatchNo:

FileID:

Lab ID:

Client Sample ID: WALL/CATCLP/10-07-07/1A Callection Date: 10/07/07 16:00

10/11/07 10:25 10/17/07 0:00 6398/R11563 1-SAMP-31003

Col Type:					
Analyte	Result Qual PQL	PQL	Units	DF	Date Analyzed
TCLP METALS BY ICP			SW#010B		(8W3010A)
Arsenic	MD	0.60	mg/L	1	10/19/07 14:06
Berlum	0.58	0.50	mg/L	1	10/19/07 14:08
Cadmium	ND	0.10	mg/L	1	10/19/07 14:08
Chromium	ND	0.50	mg/L	1	10/19/07 14:08
Lead	ND	0.50	mg/L	1	10/19/07 14:06
Selenium	NO	D.10	mg/L	1	10/19/07 14:08
Silver	ND	0.50	mg/L	1	10/19/07 14:08

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyse detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantilation Limit (PQL)
- 8 Spike Recovery outside accepted recovery timits

Print Date: 10/29/07 14:49

312912

Project Supervisor: Monika Santucci

Page 7 of 9

Analytical Results

10/19/07 12:03

5000 Brittonfield Parkway, Swite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: PH0634

Project:

CLIENT: Covanta Energy Corporation

Wallingford

ASH FIMS 100

last, ID: ColumnalD: Revision: 10/19/07 16:47

Mercury

Matrix:

W Order: 0710081

Sample Size: 25 mL %Moisture: 40.9 TestCode TCLPHG

ND

Lab ID: 0710081-003A Client Sample ID: WALLICATCLP/10-07-07/1A

Collection Date: 10/07/07 16:00 Date Received: 10/11/07 10:25 PrepDate: Batch No:

mg/L

FileID:

10/18/07 0:00 6399/R11556 I-SAMP-

Coi Type: Analyte Result Qual PQL Units DF **Date Analyzed** TCLP MERCURY SW1311/7470A (8W7470A)

0.00040

Value exceeds Maximum Contaminant Level Qualifiers: E Value acceeds the instrument calibration range J Analyte detected below the PQL

B Applyte detected in the associated Method Blank H Holding times for preparation or analysis excess

ND Not Detected at the Practical Quantitation Limit (PQL) S Spike Recovery quiside necepted recovery himits

Print Date: 10/29/07 14:49

P Prim./Conf. column ND or RPD exceeds limit 312801

Project Supervisor: Monika Santucci

Page 8 of 9

١	٠		
	ì		١
ı			

CLIENT: Lab Order: Project:	Coventa Beergy Corporation 0710055	oration					
Sample 1D	Lab JD	Parks	Data Collected	Date Received	Date Analyzed	Betch 10	Pareant Melature
WALCATCLP9-27-	0710055-001A	¥	1000/12/6	TODELBOI	1902/11/91	R11441	33.1
WALKATCLP9-27-	0710055-002A	*	1002711/8	10/2/2007	19/11/2007	E11441	34.1
WALCATCLESS-29-	0710055-003A	454	9/29/2007	10/2/2007	10/11/2007	R11441	34.7
WALKA/TCLP9-29-	0710055-004A	**	7902/62/8	1042/2801	1007.1 [701	R11441	34.9
WALCATCLP9-30-0771A	0710055-005A	Ç	70020078	104/2801	10/11/2007	R1)441	35.7
WALKATCLPR-30-	0710055-006A	Š	9/30/2007	1042/2001	10/11/2007	X11441	725
WALCATCIP/10-2-	0710055-007A	****	19/2/2007	10/1/2807	10/11/2007	21144	9

Date: 24-Oct-07

Life Science Laboratories, Inc.

٦	٠	•
	c	۰
	٦,	•
	_	
		•

CLIENT: Lab Order: Project:	Covanta Energy Corporation 0710081 Wallingford	pration					ļ	ļ
Sample ID	di dali	Units	Data Callected	Date Received	Date Cellected Date Received Date Assiyned Batch ID	Batch ID	Percent	i
WALCATCLP9-28-	V10061-001A	75	97297007	10/1/2807	1047/1/01	R11530	343	
WALL/CATCLE/10- IS-07/14	67100\$1-002A	Š	10/3/2007	10/11/2007	10/11/2007	RI1530	41.4	
WALLICATICLPHO- 07-07/14	67160\$1-003A	Actua	1002/1/01	10/11/2007	10/17/2007	K11530	46.9	

ANA		Metho	Work
ıc.			
fe Science Laboratories, Inc.	te 200	(315) 437-0200	
ence Labo	Brittonfield Parkway, Sufte 200	Syracuse, NY 13457	
fe Sci	Britton	Syracuse	

ce Laboratories, Inc.	ntories,	Inc.				AN	NLYTI(ANALYTICAL QC SUMMARY REPORT	MMARY	REPC	RT
nrkwny, Suite 200 ' 13057 (31!	(31.5) 4.37-0200					Method: Work Ord	Method: Work Order:	SW6010B 0710055			
ita Energy Corporation	ration					Project:	ä	Wallingford			١
001AMS SampType TCLP/8-27- Belch IC: ColumnIC:	SampTypic: MS Betch ID: 6363 ColumnID:	TestCode: Method:	SetCode: TCLPICP SetSod: \$W66188	Units: mg/L (SW3640A)		Prop Date: Analysis Date:	1671.07	Puello: Seglio:	11018 312631		
	QC Semple Result	헕	POL SPK Added	Perent Sample Heaut	35	WASC LOALINE HIGHLINE RPD Raf Val	Highlimk		SARPO RPDLIME Qual	∂ *	
	1.86	05.0	7	•	3	28	135				1
	2.47	0.50	~	0.046	2	\$	115				
	4.	Q.10	4.0	4.1	#	*	15			47	
	1.81	0.50	~	0	8	2	113				

등 **등 호**

0.011

~ 2 3

0.50 0.50

2.12 0.388 0.176

Analyse
Anamic
Berlum
Cedinskin
Chromium
Lead
Selenium
Shver

Qualifiers	m	Qualifiert: B Analyst detected in the speciated Marked Blank E	E. Value exceeds the instrument californion rage	 Analyse desected below the PQL.
	Ð	Not Detected at the Prectical Quantitation Lieut (PQL) R	R. ALPD exceeds accopted praxision limits	S Spiles Rocovery outside accepted recevery limits
	-	Not Detected at the MDC or R.L.		
Deter		29-0ct-07		Page 4 of 6

Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200 East Syncme, NY 13657 (315) 437-6200

ANALYTICAL QC SUMMARY REPORT

SW6010B 6710055 Wallingford Method: Wark Order: Project:

CLIRNT: Coverda Energy	Corporation					Project:	#	Wallingford	P		
Semple ID: 67/10068-001ANSD Clerk ID: WALKATCLP19-27-	SempType: NSD	TestCode: Method:	E TCLPICP SWEETER	Units: right.		Prep Dete: Asseptite Deta	10/15/07 : 10/16/07		Flumble: 1 Sergble: 3	116/8 312032	
Arabyte	OC Semple Result	ź	SPK Added	Parent Sample Result		LowLind	HOKLINE	LOWLINE HIGHLIME RPD Ref Val	XAP.	SAPO RPDUM	3
Arenic	3.	8	~	0	8	8	155	1.95		8	
•	787	9:0	~	0.648	X	18	115	2.47		8	
min	1.43	0.10	0.4	1.12	2	28	116	7.	•••	8	\$ 0
mirm	1.83	8	~	•	5	8	115	1.01	•	&	
	2.18	0.50	~	0.314	8	*	115	2.12	**	2	
Num.	1361	5	3	0.011	8	28	115	0.308	•	8	
_	0.180	98	92	•	8	8	ş	0.176	•,	72	

8 Value extends the instrument calibration range 2. RPD extends accepted precision limit B Assables detected in the amorisated Method Blant
ND Not Describt at the Prantised Quantitation Lieut (PQL)
U Not Describt at the MDC or RL
29-Cct-07

Date

Analyse desected before the PQL.
 Spiles Recovery consider accounted recovery limits.

Page 5 of 6

Life Science Laboratories, Inc. 5000 Eritoafied Parkway, Suite 200
East Syncme, NY 13057 (215) 437-0200

Coverta Energy Corporation

ANALYTICAL QC SUMMARY REPORT

SW1311/7470A 0710055 Wallingford Method: Worl Order:

Pro)

CLIENT: Coverta	Energy Corporation.					Proj.	::	Wallingford	Į.		
Sample ID: 8710665-001 Clent ID: WALKATCA Instrument:	IAMS SampType: 86 LPR-27- Batch ID: 6398 ColumnID:	TestCoda Method:	<u></u>	TCLPHG UNIX: mg/L. BW1311/7470 (BW7470A)		Prep Dela: Analysis Dela:	10/18/07 K 10/18/07		Rushic: SeqNo:	11686 312788	
Amelyte	QC Semple Result	헕	PQL BPK Auded	Parent Semple Rosult	*REC	LowLinsk	HighLimit	WREC LOWLANK HIGHLINK RPD Raf Val	*	SAPD RPDLink Out	8
Mercury	0.00204	0.00040	0.002	0.000386	2	2	121				

B Annitys described in the essociated Method Blank
ND Not Described at the Predictal Quantitation Linia (PQL)
U Not Describe at the MEC or fill.
29-0cs-07

Date

B. Value exceeds the instrument calibration mays
R. BPD exceeds excepted precision limit

3 Analyse detected below the PQL Spike Recovery stables accepted recovery limits

Page 1 of 6

Inc.	
Laboratories,	way Softe 280
e Science	Dritton field Parks
-	=

(315) 437-4260 East Syracuse, NY 13057

Covanta Energy Corporation

SW1311/7470A 0710055 Wallingford Method:
..urk Order:
Project:

ANALYTICAL QC SUMMARY REPORT

								1					
CLIENT	Covanta Energy	Corporation						Project	#	Wallingford	2		
Semple ID: 67 Client ID: W. Instrument:	Sample ID: 0710066-001AMSD S Client ID: WALACATTCLP16-27-1 Instrument:	SampTypic i Batch ID: ColumnID:	0 3	TestCod Method:	<u>u</u>	TOLPHO UNIS: MGL. BW1311/7470 (BW7470A)		Yes Dele: Lnelysis Delex	10/18/07 70/18/07		PLANTICE Secondo:	11 888 31 27 80	
Analyte		OC Sample Peruit	4	컱	POL SPK Added	Parent Sample Result	K.REC	LowCinz	FORTME	WREC LOWLINE HIGHLIME RPD Ref Val	X.R.	SAPO RPDLINE Qual	ð
Mercury		õ	00200	0,00040	0.002	0.000386	=	ă	121	902000		7.	

3 Analytic detected below the PQL S Spiles Recovery outside accepted recovery limits B Annityte detected in the associated Method Blank E Veles exceeds the instrument calibration range
NO Not Denoced at the Precision Quantitation Limit (PQL) R RPO exceeds accepted precision limit
U Not Democred at the MDC or RL
29-Oct-07

Deter

Page 2 of 6

fe Science Laboratories, Inc. Brittonfield Parkway, Suite 200 Syracuse, NY 13657 (315) 437-4200 ENT. County France Committee	or the second
---	---------------

Life Science Laboratories, Inc.	oratories, I	J				AN	LYTK	ANALYTICAL QC SUMMARY REPORT	JMIM	ARY RI	POR
East Synches, NY 13057	(315) 437-4280					Method:	Method:	SW6010B			
CLIENT: Coverta Energy	gy Corporation					Project:	į #	Wallingford			
Semple ID: 8710885-801A Clent ID: WALICATCLP18-27- heliument:	SempType: PDS 27- Betch ID: 6363 ColumnID:	TestCode:	etCode: TCLP4CP pthod: \$7M88108	Unite: mg4. (SW2010A)		Prep Dete: Analysis Dete:	10/11/07 c 18/16/07	Punhic	1	11916 312054	
Analyte	OC Sample Result	헕	SPK Added	Parent Sample Result	*REC	WATEC LOWLENK Highland RPD Part Val	tight.Jmit. R	PO Ref Val	CORNE	MRPD RPDLIME	3
Arsenic	96.4	8.0	~	0	8	æ	5				
Bartum	8.9	0.50	•	0.646	3	2	Ä				
Cadmium	2,00	0.10	-	1.12	8	ĸ	ħ				
Chromium	5.	0.30	•	•	5	12	2				
red Test	87	0.00	*	0.314	8	12	扫				
Solanium	0.947	0.10	-	6 ,011	ä	ĸ	52				
Giver	0.485	9	*	•	64	*	*				

¥ ¥	æ	Assolyte detected in the specelated Method Blank	m	Value exceeds the instrument celtimation mage	J Analyte described below the PQL	
	Ž	(D) Not Detected at the Practical Countination Limit (PQL)	æ	RPD example accepted precision that	S Spills Recovery outside accepted rea	oevery lim
	>	Not Detected at the MDC or RL				

Inc.
ories.
borato
e La
cienc
Life S

5000 Brittonffeld Parkway, Saite 200
East Syraeme, NY 13057 (315) 437-0200

Mathod: Week Order: Project:

SW6010B 0710055 Wallingfurd

ANALYTICAL QC SUMMARY REPORT

CLIENT: Coverte		Stargy Corporation					Project:	쁑	Wallingford	_			
Sample ID: LCB-6353 Client ID: ZZZZZ	CS-405	SampType: LCS Batch ID: 6363	TestCode Method:	SetCode: TCLPICP	Units: mg/L (BW2016A)		Prep Date: Analysis Date	10/11/07 c: 18/16/67		RunMa: SeqMo:	11618 312028	. 2	
Analys		Columnity: QC Sumple Result	ğ	SPK Added	Parent Sample Result	*REC	LowLink	HIGHLIME	LOWLINE HIGHLINE RPD RATVA	¥	8	WRPD RPDLIME Quel	ā
Americ		0.207	0.10	0.2	•	ş	22						
Berken		0.207	0.10	0	۰	ž	æ	116					
Cadmium		0.197	0.020	0.2	•	3	8	115					
Chromium		0.202	0.10	0.2	۰	ξ	2	13					
3		0.205	0.10	0.2	0	Ē	2	=					
Selenium		0.199	0.020	0.2	0	Ŝ	2	115					
Siver		0.0512	0.10	8	0	ş	2	116					

J Analyte detected below the PQL Splice Recovery entering acceptable E Value excepts the instrument calibration range R. NPO excepts appealed proteins limit B Amilys described in the associated Method Blank
ND Net Described at the Practical Quantitation Likely (PQL)
U Net Described at the MDC or RL
29-QC-07

Date:

Que More:

Page 3 of 6

Life Science Laboratories, Inc.	ANALYTIC	ANALYTICAL QC SUMMARY REPORT
Part Suranus NV 1967 (18.47 A)	Method: SW6010B	SW6010B
	Work Order: 07100\$1	0710061
CCIPENT: Coverts Poerey Commercion	Project: Wallingford	Valinofred

	Token all famous for some	MATERIAL (CIC)					Worl	Work Order:	0710041				
CLIENT	Coventa Energy	Corporation					Project:	#	Wallingford	2			
Sumple (D:	LCS-4398	SampType: LCS	TestCode	TOUPICP	Units: mgf.		Prep Date:	1817/87		Runkki	11863	_	
Client ID: Instrument	Client ID: ZZZZZ Instrument:	Batch ID: 4388 CalumnID:	Method	S144610B	(Amadema)	•	Analysis Det	LONGO :	-	<u> </u>	K K	2	
Anable		QC Semple Result	컱	SPK Added	Parent Sample Result	Z.	A STATE OF THE PERSON NAMED IN	KREC LONGING HONLING RPD Ref Val	PLO Ref Val	¥	98	KRPD RPDLIME Quel	ð
Araenic		0.19		0.2	0	6	*	118					
Sertura		0.190	0.10	0.2	•	Z	2	115					
Cadmium		0.100	0.020	0.2	٥	8	*	15					
Chromium		0.198	0.10	0.2	0	ě	2	5					
Leed		0.18	0.10	95	•	8	2	13					
Selenium		0.168	0.020	7	0	ĭ	*	15					
She		6940'0	9.10	900	0	Z	2	116					

3 Analysis desected below the PQL Spiles Responsy outside accepted recovery thesis B Amilyts detected in the serociated Method Blank
ND Not Detected as the Practical Quantitation Limit (PQL)
U Not Detected at the NDC or PL
29-Oct-87 Qualificani:

Date:

Page 1 of 1

Life S	Life Science Laboratories, Inc.	aborato	ries, In	16.				ANA	LYTI	ANALYTICAL QC SUMMARY REPORT	DMIM	LRY RE	POR
East Syrak	3000 MINGESON NY 13057 (315) 437-9200	(S15)	437-0200					Method:	Method:	SW1311/7470A	¥		
CLIENT	CLIENT: Coverta Energy Corporation	ry Corporatio	ان					Project:		Waltingford			
Sample D: LCS-6389	1,05-6369	SampType: LCS	201	TestCode	TCLPHO	TestCode: TCLPHG Units: mg/L		Presp Darke: 10/52/07	10/15/07		Russia 11886		
Client ID: 22222 trefrument:	7	Belch ID: \$196 ColumnID:	8		SWISEINE	Mathod: SWISELFATO (SWIATDA)	•	Analysis Date: 18/19/07	10-19-07	Sagilic		316302	
Analyte		8	OC Sumple Result	컱	PQL SPK Added	Party State	MAEC	LONCINK H	THE PARTY IN	WATEC LONLINE HIGHLINE RPD Raf Val	260	SAPO RPDLIMI Qual	8
Mercury			0.00480	0.00020	9000	۵	8	4	200				

Analyte detected in the senociated Method Blank:	B Value exceeds the instrument calibration range Amid	Amityte describe below the PQL
D Not Detected at the Practical Quantitation Limit (PQL) R RPD exceeds accepted precipion limit	R RPD exceeds accopated precision Bank S	Spile Recovery outside accepted recovery limits
Not Describe the MDC or NL		
29-Oct-07		Page 2 of

Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Sults 200 East Symense, NY 13057 (315) 437-0200

ANALYTICAL QC SUMMARY REPORT

SW6010B 07100SS Wallingford Method: Work Order: Project:

CLIENT	LIENT: Covanta Energy	nergy Corporation						Project	퓽	Wallingford	P			
Semple ID:	##B-6363	SempType: MBLX		atCode:	TCLPICE	Unite: moft.		Prep Date:	1871X	11	Rumblo:	136		
Client ID: ZZZZZ	2002	Batch ID: 4363		ethod:	Method: SYNDOTOR	(SW3010A)	•	Analysis Date:	e terient	11	SeqNo:	712024	x	
Ineditament.		ColumniD:												
		OC Sums	4			Person								
Analyte		Person		2	POL SPK Added	Percent	*REC	Londing	Highligh	KREC LONLINK HIGHLINK RPD Raf Val	*	2	MRPD RPOLINE Qual	ð
Arsenic			QN	0.10										
Berlin				0.10										
Cadmium			<u>8</u>	929										
Chromium				0.10										
5				0.10										
Selector				920										
Silber				0.10		,								

E. Valuo esconde the instrument celibration range R. RPD escende eccepted precision limit B Author detected in the associated Method Blank
ND Not Detected as the Practical Quantitation Limit (PQL),
U Not Detected as the MIDC or RL. Qualifiert:

29-04-07

Date:

Analyse desorted below the PQL
 Spilise Roomay outside scoquing recovery limits

نِ
9
ies.
ator
bor
Z
Science
Life

5000 Brittonfield Parkway, Suite 200 East Syracuse, NY 13657 (315) 4

(315) 437-0200

Coventa Energy Corporation CLIENT

ANALYTICAL QC SUMMARY REPORT

SW6010B 0710081 Walingford Method: Work Order:

Project

Semple ID: MB-4516 Clear ID: ZZZZZ Instrument:	SampType: MBLK Batch ID: 6396 ColumnID:	TestCode	TeatCode: TCLPICP Method: SWR0198	Unite: mg/L (EW3010A)	4	Prop Date: Analysis Date:	10/1787 70/18/07		Rende:	11603 24264		
Analyte	QC Sample Result	Z Z	PQL SPK Added	Parant Sample Result	MEC	LowLimit	HONLIME	MREC LOWLER HIGHLIME RPD Ref Val	*	KRPD RPOLIME	OLIM	20
Arsenic	9	0.10										
Berlum	2	0.10										
Cadmium	2	0.020										
Chromlum	2	Q.10										
P#47	9	0.10										
Selperium	9	0.020										
Sher	9	0.10										

 Analyse absented below the PQL.
 Spiles Recovery validate soughed recovery limits. E Value exceeds the instrument cutilitation renge R RPD exceeds accepted precision limit B Analyse described in the merocianed Medical Blant.
NO Not Described at the Practical Quantitation Limit (PQL).
U Not Described at the NOC or RL.
29-Oct-07

Qualificant

Date

Page 3 of 5

ANALYTICAL QC SUMMARY REPORT	Method: SW6010B Work Order: 0710055	Projects Wallingford
ife Science Laboratories, Inc.	ast Syracuse, NY 13057 (315) 457-0200	LIENT: Coverta Baerry Corporation

Life Science Laborate	Laboratories, Inc.	Inc.				A	ALYTI	ANALYTICAL QC SUMMARY REPORT	SUM	MARY	REP)RT
East Syracuse, NY 13657	(315) 437-4200					Method:	Mathod:	SW6010B				
CLIENT: Coventa Energy	Aurenty Corporation			,		Projects	ŧ	Wallingford	_			1
Sample ID: TRLICASSO Client ID: ZZZZ Instrument	SampType: TBLK Batch IO: 6363 ColumbD:	TestCode: Method:	TeelCode: TCL.PICP Method: SWW0108	Unite: mg/L (SW3010A)		Prap Dule: 10711/07 Analysis Dule: 10718/07	1011.07 10110.07		Rumblex Seq No:	11616 313026		[
Analyte	QC Sample Result	2	POL SPK Added	Parent Sample Result	ARC S	LonLink	HONLINE	WREC LOALINE HighLimit RPD Ruf Val	*	SARPO RPDALME Guel	ð	1
Araenic	9	0.50										
Berum	2	970										
Cadmium	2	9.0										
Chromlum	9	0.50										
Lead	2	090										
Seisnium	2	0,10										
Silver	9	0.50										

3 Analyse detected below the PQL 5 Spiles Recovery outside accepted recovery limits 8 Value cacceds the instrument cultiferation range R RPD exceeds ecosystel precision flusis B Analyse delected in the americand Method Blank
ND Not Districted at the Practical Quantization Limit (PQL)
U Not Detected at the MDC or RL
29-Oct-07 Qualifiers

Dute

Page 4 of 5

ಬೆ
Ě
_
ŝ
Ē
2
2
9
₽
3
9
ă
ij.
Š
بق
곡
\vdash

5000 Britionsfield Parkway, Suite 200 East Syracese, NY 13057 (215) 4

(315) 437-0200

CLIENT:

Coverta Energy Corporation

ANALYTICAL QC SUMMARY REPORT

SW6010B 0710081 Wallingford Method: Work Order: Project:

Semple 1D: TBLKD-61719 Client ID: ZZZZZ Instrument:	SampType: TBLK Batch ID: 6386 ColumnID:	TeatCode: Method:	TestCode: TCLPICP Method: SWED188	Unite: mg/L (SW2010A)		Prep Date: Analysis Date:	10117ET		Rusho: Sequio:	11563 11280		
Analyte	OC Sample Result	5	PQL SPK Added	Preset Semple Result	MREC	LowLink	HighLimit	WASEC LOWLINE HIGHLIME RPD Ref Val	*	8	WAPD RPDLIME Quel	3
Armenic	2	0.50										
Derlum	2	0.50										
Cadmium	9	g. 10										
Chromium	ą	0.50										
Page 1	9	9.50										
Selenium	2	0.10										
Sher	9	8,0										

Author descrind below the PQL.
 Spitz Recovery overlets accepted to

B Analyse detected in the associated Method Blank
ND Not Detected at the Practical Quantitation Limit (PQL)
U Not Detected at the NEDC or PL

Ovelibers

29-Oct-07

Deter

Page 5 of 5

ಪ	
atories, Inc	
S S	
- 3 8	
Life Science 800 Betteenfeld Park fast Symeus, NY 13	

SW1311/7470A 0710055 Method: Work Order:

ANALYTICAL QC SUMMARY REPORT

Wallingford

SUMPED RPDLIME Qual SCREC LOWLINE HIGHLINE RPD Ref Val Project: Prep Date: 10/1997 Analysis Date: 10/1997 TestCode: TCLPHG Units: mg/L.
Method: 8W1311/2/278 (SW7478A) i i POL SPK Added 0.00020 Covasta Energy Corporation

1885-4399 SempType: MSBLK
22222 Batch ID: 6399
ColumnID: Sample IC: INS-6399 Clant IC: ZZZZZ Instrument: CLIENT Analys Page 1 of 2

Analyse detected tolon the PQL
 Spile: Recovery outside accepted recovery limits

E. Value accords the instrument calibration maps R. RPD except accords accorded precision limit

B Analyze detected in the sesociated Method Blank
ND Not Described at the Practical Quantimizes Limit (PQL)
U Not Described at the NDC or RL

Quadificans

Date:

ي
1
<u>.</u>
5
ra
ڲؚ
7
Se
ë
Sc
ife
. 3

5000 Brittonfield Farkway, Suite 200 Kast Syracuse, NY 13057 (315)

(315) 437-0200

Mathod: Work Order: Project:

ANALYTICAL QC SUMMARY REPORT

SW1311/7470A 0710055 Walingford

CLICAT	Covanta Energy	Corporation						Project	#	Wallington	P			
Sample ID: Clark ID: Instrument	Sample ID: TIBLICI-4330 SampTyp Clant ID: 22222 Batch ID: Instrument Columni	SampType: TBUK Batch ID: 6369 ColumnID:		1 24	LPH0 H34477670	TCLPHO Units mgf. BW13147470 (BW7470A)		Prop Detic Analysis Detic	10/18/07 10/18/07	- "	FumMo: BaqMo:	11886 31278		
Analyte		QC Semple Result		POL SPK Added		Parent Sample Result	SKREC.	Louding	High! Jmit	MREC LOWLINE HIGHLINE RPD Ref Val		8	SKRPD RPDLimit Qual	Out
Mercury			0.00040											

Page 1 of 5

B Analysis deticated in the associated Mathod Blank.

ND Net Detected at the Practical Questitation Limit (PQL)

U Net Detected at the MDC or RL

29-Cd-07-Qualificre;

Deter

_
ن
₫
3
Ţ
7
Z
0
2
ď
8
6
.2
Ś
ife
H

5000 Brittonfield Parkway, Suite 200
East Syracuse, NY 13057 (315) 437-0200

SW1311/7470A 0710055 Wallingford Method: Work Order: Project:

ANALYTICAL QC SUMMARY REPORT

-Evall E	Comments Drawn									W. Hilm C.	7			
		Computation .						rroject		W WALLES				1
Semple 10: Client 10: Instrument	Sample ID: TBL/C3-6376 Client ID: ZZZZZ Instrument	SampType: TBLK Batch ID: 6399 ColumniD:	美	TestCode: Method:		TCLPHG Units: mg4 8W13147470 (\$W74704)		Prop Date: Averyale Date:	10/19/07 10/19/07	. .	Rumble: Secples:	1156 31278	į	
Analyte		2 2 3	OC Sample Result	헕	POL SPK Added	Pasent Sample Pasent	MARC	LowLink	HighChnik	WAREC LOWLINE HIGHLINE RPD PREVAI		SAPO RPOLIMI Qual	O M	
Marcury			Ş	0.00040										

Amelyee detected below the PQL
 Spike Recovery certaids accepted recovery thmits

B Analyse described in the nemocined Method Blank
ND Not Described at the Practical Quantization Limit (PQL)
U Not Described at the MDC or RL
29-CAst-07

Date:

Qualificent

Page 2 of 5

Lite Science Laboratories, Inc. - Brittonfield TRACE METALS SECTION SALON E PREDADATION AND EXTRACTION I OGROOK

					TCLP SAN													
	<u>. B</u>	ATCI		276 C	Der Tierr ID	M SV H&P	Sa	raple cription	F	TRA POLICE	taitial pH	METH fater- mediate pH	TCLP Fluid Used	Seemple Size (g)	Fe		986) Final pH of extract	Note
	071	005	A100-7	Wall	instead	м	Α	sh	Ų		11.98	4.31	2	100	200	202_	7.59	aB
			_002A		<u> </u>	1					11.71	10.57	1	1	1	-	9,79	
			-003A								1/.82	11.41	4	4_	14		10.29	
			-004A		•				Ц		1	10.66		4	1		10.10	
			-005A				-	<u> </u>	Н			11.65	+	├-	1		2.73	
L		<u> </u>	_ 006A			\vdash	+	-	Н		12.65		+	-	H		10.17	
-	<u>_</u>	<u> </u>	007A	-		*	_	,	1	<u> </u>		14.75	 	4	╁		10.22	
,	<u></u>	- <u>- 1</u>	<u>(330</u>				 		-		2.88		10		├	<u> </u>	2.19	
			—						<u> </u>			DL 10 11-6	7				,	
																		-
				·														
										<u> </u>	·		ļ					
ŀ				<u> </u>						٠,					_			
				<u> </u>			_		_				>	<u> </u>	ļ			
_						<u>'</u>	-		_				 		_			
				-			+-		\vdash								#et 10	41-61
				_			+-		<u> </u>				 		-	-		
	TCI TCI	LP EX LP EX OM TI	TRACTION TRACTION TRACTION EMP (23 ± 2	N FLUII N FLUII 2 °C); (0 #1: 0 #2: <u>1554</u> On: Min/Max 2 as per clie	 22				Mir	/Max_2:	Start	n time (18 Date/Time th Date/Ti	e: <i>10 </i>	10 K			•
			2.) Assume 3.) MS sarr	: fluid # 10le = <i>0</i>	2 as per clie 7) ao 55 - a difled with n	nt, nee oosa	d leach: () .	até pH o	of i	CP st	oike solné	1428-	· ·).(@:1_	_mL of b	ig spil	ke so	In # <u>475</u>	7-9
		-	-	TURE:	Daniel	701	M	_	_		DATE:	10-	600					
			D BY:			0	<u> </u>			_			>-11-			- -		
	G :	Logbool	ks 2006/TM/T	MS.TCLP	, 22				7	0							٠.	

TRACE METALS SECTION TCLP SAMPLE PREPARATION AND EXTRACTION LOGBOOK

Sample ID	Client ID	M SV H&P	Sample Description	Free Liquid	(micial pff	trese- revertisate pH	TCLP Fluid Used	Secondo Size (g)	Final Volume shiL	Final pH of extract	Non
6716053-001A		M	Veit	NO	16.02	2.91	1.	100	2000	870	οć
ASOD	1	1		1	10.13	3.51	1		1	8.52	
CO 3A					14.50	2.52				6.78	
9040					7.72	Z.90				7.52	
OUSA					10.71	2.77				8.45	
OOLA					16.87	7.98				341	
A 6655					10.47	2.32				7.47	
008a					11.07	2.61				8.91	
porp					11.07	1.73				2,73	
V 010A		1			16.95	2.01	J.	1		8.37	
71061-001A		M	4	J	9.21	5.21	ı	100		5.49	
18LKI-6376	-	4	_	_	4.94	-	1	_		4.94	
TBUQ-6376			-	-	2.88	-	ير	_		2.90	
0710081-491A	WALLTALFORD		ASH	No	H.92	11.28	1	100		10.19	•
-002A					11.17	11.15		-		10,74	
OO IA				بل ا	12.63	11.57	4	4	1	10.15	
		_					<u> </u>				
										M	277
REAGENTS Filter lot * GE - G ? TCLP EXTRACTION TCLP EXTRACTION ROOM TEMP (23 ± 2)	FLUID #1: 259 FLUID #2: 25	?)- <u>p</u>	- -	Off; Mir	VMax_2	Finish	Date/Tim	e: 10			\$
2.) Assume 3.) MS sam Metals aliq	fluid # 2 as per cliet fluid # 2 as per cliet pls = <u>a 120059-0</u> uots acidified with n	nt. need	leachate off of	only.	oike sofna	6420-3).(@1)	_mi_ofH 	ig spike se	oin # <u>69:</u>	(7-9)
Analyst's comments_											
ANALYST'S SIGNAT		0	est-		DATE:	10-16-	-67				
REVIEWED BY:	175	Q(<u></u>		DATE:	10-5	1 -0"				

O:\Logbooks 2000\TM\TMS.TCLP.p2

72

Life Science Laboratories, Inc. - Brittonfield Lab SAMPLE PREPARATION SUMMARY FORM **ASH PROJECTS**

Project/Facility Name: WALLINGFORD

Sample Description	Sample ID	Total Sample (lbs)	2A Sample > 2' (ibs)	2B Sample < 2" (lbs)	Frac. A Sample > 3/5" (libe)	Frac. B Sample < 3/6". (lbs)	Date Propered
9-27-07 [18	0710055 -001A	2.90	0.io	2.70	1.43	1.66	रवेदावि
1 128	0024	3.42	0.04	3.38	1.80	1.58	
9-29-03/1A	DOSA	2.44	0.00	2.75	1.22	1.14	
9-29930-07/ZA	004	3.46	1.01	3,42	1.65	1.74	
9-30-07 1A	OFF	2:36	0.06	2.30	0.99	1.30	
9-30-07/24	9064	4, 24	0.86	લ, હ	1.80	2.36	
18-2-87 IA	DOTA	3,56	0.16	2.40	1.80	1.39	4
		·		· .			

24.	Semple n	inches en	d non-combable	metal fragments.
24.	· 35111015 ()			17 MARKET 17 MARK 17 1907 NAPA

2A - Sample material < 2 Inches,
Fraction A - Sample material > 3/6 inches,
Fraction B - Sample material < 3/8 inches,

Analyst Daniel D	blut	Date: 10-07
Reviewed by:	_	Date: 10-11 - 07

G:\Lagbooks 2008\Wet Chem\WC11_lawcrushlog.doc

Life Science Laboratories, Inc. - Brittonfield Lab

SAMPLE PREPARATION SUMMARY FORM

*12 10-16-07 **ASH PROJECTS** Project/Facility Name: WALL-INGFORD

Sample Description WALL CATTLE	Sample ID	Total Sample (lbs)	2A Sample > 2" (Rbs)	2B Sample < 2° (lbs)	Frac. A Sample > 3/8" (ibs)	Frec. 8 Sample < 3/8" (be)	Date Prepared
9-29-07 LIA	0710081-00VA	1.82	6.06	1.76	a 04	1.71	10-16-67
10-03-07-07/A	AZOO	3.04	0.00	3.04	0.01	302	1
10-07-07 1A	J 057A	2.16.	0.00	2.16	0,11	2,14	1
				·	15	 دهم	
				_;			
· · ·	•						
			•	٠.	٠.		
						10-	DR.

2A - Sample material > 2 inches and non-crushable metal fragments.
2B - Sample material < 2 inches.
Fraction A - Sample meterial > 3/8 inches.
Fraction B - Sample meterial < 3/8 inches.

Analyst Daniel & Robes	_Date:	10-16-07
	-,	•
Reviewed by:	_Date:	10-23-07

G: Laphonia 2005 Wet ChemitWC11 Linecrustics doc

Clarit name 3								3	COV Log Number			
-	2002	S OF E	MOJECIS OF IMPLIANCES			7		Į.	potribed			
530 Sorn	Ches	1 CHERRY ST.		1711-145 (SOC) move	4-164	``	***	WI V	<u></u>	AF		
Cay, State, 20 Left LINES	360,0	1	92 Pepart atte	SED, CT CLIPS, PROGRAMMEN, JELEY CRANGER	Korp	7	4	\ \ \ \ \	_			
į	2 A	Sempled by	Sempled by TODO WHEELER	ELER	Number	***	(6)A -170	No.	\ <u>'</u>			-
			Sample description	totton	Containers	क \ह्य		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2	Remertos -	
300	5		wyca/reu/ 9-27-07 / 1A	#1 / 10-12	-	×	×	×		Obose COKA	TAN.	.,
, S	-		10-12-6 12-18-19 20 1 24	7-07 / 24	_	_	_					
428/01 Dame		WALCA	WAYCA (TEUP) 9-23-29-07/ 18	N. 170-PC-	-				_	Drok ze.	Dock ze for ou an	-
121/67 000		UN/C	UM/CA/TEUP/9-29-07/14	23-07/14	-					THE LE WILL	TK LE	7
Come, Lotalle		LARY CA	1/10/19-2	LAL (CA / TELD / 9-39-30.01/ 24	~					11000	A 10	. X
1130/07 Cygoo		ese/ca	W./CA/72 W/9.30-07/1A	41 110-0	-				-	1000	Court Luth, only	Z
3	R	cuttes.	AL 10-18-6/2017 1000	4-07/20	_							5
43/01/200		whyca	My (10-0-0) 11	11/10-	-	>	->	-,				
	N.	775: 6	SANTE: LIFE BORNE LARS	£ (465						.		
		3	COO BRITTO	Sood BRITTEN FIELD PARKULAY	X#,							· · · · · · · · · · · · · · · · · · ·
1		8	WITE 300	Suite 340, Box 4942								····
		Ŋ	VERUSE.		Ami:	Swines Receivable	Rece	Shake	_			
T.			E	Print Numme			Company	Á		and O	Time	_
11	1	-	rodd Wheeler	acler	3	T	TECTS O	Collects Parrects of Warmite FORD	JE Fal	2	7 92%	
d	111	1	Appropri	Ada Schotz		727	1			[1/30	
Λ	(-	
				35) g	-							
					_							

COURNIE ACTUAL COME

*KEN: AQ-Aqueous NA-Normqueous BL-Shudge GW-Groundwater BO-Boll OT-Other PE-Petrolium BA-Bottom Ash FA-Piyesh CA-Dombleed Ash

22

Life Science Laboratories, Inc.

Sample Receipt Checklist

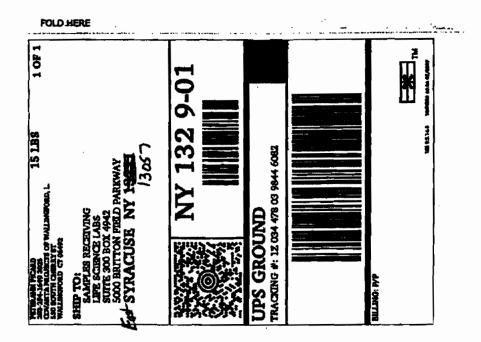
Client Name: COVANTA			Date and Ti	rne Received:	10/4/2007 11:\$6:90 AM
Work Order Number 6710658			Received b	y: ada	
Checklist completed by:		16/07	Reviewed	w M1	10/8/07
Madrix	Canter name:	<u>ups</u>			
Shipping container/cuoler in good condition	17	Yes 🗹	No 🗆	Not Present	
Custody seeks intact on ehipping contained	cooler?	Yes 🗆	No 🗔	Not Present	₩.
Custody socia intact on sample bottles?		Yes 🗀	No 🗆	Not Present	
Chain of custody present?		Yee 🗹	No 🗆		
Chein of custody signed when relinquished	and received?	Yes 📆	No 🗆		
Chain of custody agrees with sample label	17	Yes 🗇	No 🗹		
Sumples in groper containen/bottle?		Yes 🛂	No 🗆		
Sample containers inteot?		Yee 2	No 🗆		
Sufficient sample volume for Indicated test	?	Yee 🗹	No 🗆		
All samples received within holding time?		Yes 🔀	No 🗔		
Container/Temp Blank temperature in com	pllunce?	Yes 🗹	No 🗆		
Water - VCA viels have zero headspace?		Yes 🔲	No 🗆	No VCA visis su	bmitted 🗹
Water - pH scooptable upon receipt?		Y== []	No 🗔	Not Applicable	. ☑

Comments

Lab Sample Number 1 through 3 not received, received instead; "WAL/CA/TCLP/8-27-07/18" and ".../8-27-07/28" which are not listed or COC.

Commonwe Action: Notified Jason Farren.

UPS Internet Shipping: Shipment Label


Page 1 of 1

UPS Internet Shipping: View/Print Label

- Print the label(s): Select the Print button on the print dialog to your browser does not support this function selectifyint from the first the print the first the print the ppears. Note: If dru to print the label.
- Place the label in a UPS Shipping Pouch. If you do not have a pouch, affor the folded label using clear plastic shipping tape over the entire
- 3. GETTING YOUR SHIPMENT TO UPS Customers without a Daily Pickup
 - Schedule a same day or future day Pickup to have a UPS driver pickup all of your Internet Shipping packages.
 - . Hand the package to any UPS driver in your area.
 - * Take your package to any location of The UPS Store®, UPS Drop Box, UPS Customer Center, UPS Alliances (Office Depot[®] or Steples[®]) or Authorized Shipping Outlet near you, Items sent via UPS Return ServicesSM (including via Ground) are accepted at Drop Source.
 - " To find the location nearest you, please visit the "Find Locations" Quick link at ups.com.

Customers with a Daily Pickup

- Your driver will pickup your shipment(s) as usual.

https://www.ups.com/uis/create?ActionOriginPair=print PrinterPage&POPUP_LEVEL... 10/3/2007

TO SO CONTROL OF THE PARTY OF T	Clerk name	Clerk name Coults ITA	PROJECT	N OF W	PROJECTS OF WALLINK FORDS	Project or PO #					Analysi	is required			
Series Total Control of Transfer Control of the Con	Address		CEE	20.00		Phone \$205) 29	4-14	,				W.		a.	
	City, State, 2	Charme	Sep. C	T COAP	Report atta	Tech Ces	4205	<u></u>	**. ***) (1	(X			_	
SANTE: LIFE SCIEKE LABS. SANTE: LIFE SCIEKE LABS. SANTE 300, BOX 4942	5	Time and sampled		Sempled by	1000 MB	ELEK.	Number Societies	1/50	1328	12 Ac.	S AM			Permer	
SAND TO: LIFE SUBJECT 1485 SOOD BRITTON FOOD PARLIEW SALITE 300, BOX 4942 SALITE 300,		1		-			$\overline{}$	2	7	3	3	I	+		
SOUNTE SCIENCE LABS SOUNTE SOL BRITARIA FROM PARLIMY SUITE SOL BRITARIA FROM PARLIMA SUITE SOL BRITARIA SUITE SOUNTE BRITARIA OF COMMENT BANDOM B	3	200		2223	+120/104-	11/10-11-02	-	- 1	7	7	×		1	Seese Cr	75
Seaf Ta: LIFE SCIEKE LABS SUITE 300 BR Man I 1920 I Amil I SWAYES RECEIVING SYRKUSE, NY 1920 I Amil SWAYES RECEIVING Omount One of the contract of Libraries and Strong I Take A Comman Property Supplies to Libraries and Strong I Take A Comman Strong I Take The Contract of Libraries and Strong I Take A Comman Strong I Take The Contract of Libraries and Strong I Take A Comman Strong I Take The Contract of Libraries and Strong I Take A Comman Strong I Take The Contract of Libraries and Strong I T	+		- 1					+	_	-8	1,		• •		
Say Ta: Life Science Labs Suite 30. Box 4942	-							\dashv	\dashv		-	\Box			
SOUTH SOUTH FROM MELLINY SOUTH SOUTH FROM MAN SOUTH S															
SEND TO: LIFE SCIENCE LABS SOUTH SEC. NY 18221 Amil: Supples Receivings Syrecuse, NY 18221 Amil: Supples Receivings Syrecuse, NY 18221 Amil: Supples Receivings Syrecuse, NY 18221 Amil: Supples Receivings On the lamb of the laboration of the lamb of the laboration of the laboration of the laboration of the laboration in the Parket												٠.			
Scall Ta: Life Science 1485 Social British Field Marylly Suite 300, Box 4942 Syrkuse, My 13221 Amil: Supples Receiving Output A usof Figure Contain Property A committee in Suite Suite M. Homephous St. State 601. Grant M. Homephous M. M.	-	-						-							
SCHOTA: LIFE SCIENCE LABS SUITE 300, BOX 4942 SYRRUNG, NY 13221 Amil SWINES RECEIVING SYRRUNG, NY 13221 Amil SWINES RECEIVING One of the State of Figures Country Registers of Walling Foods Comme Protest in State of		-						1	+		-			:	
SOUNTS: LIFE EXIGENCE (ABS) SUITE 300, BOX 4942 SUITE 500, BOX 4942 S	_					******	,		-		-	<u>;</u> ,			
Syracuse, NY 13221 Ami: Supples Receiving Syracuse, NY 13221 Ami: Supples Receiving Company Again, Schotz Contains to Libraries (196)			3	1 75: 6	IFE SCIEK	£ 1465									
SVEKUSE, NY 13221 Aml: SWAPLES RECEIVING Company Company A ser Finer Collish Respects of Warning 10/4/ Company				S	COC BRITTO	J FIELD PACK	44.				, .				
SYRACUSE, NY 13221 Aml: Supples Receiving Domony Omnowy Agree of Faces Country Regrects of Warningford 10/2/2 Country Regress of				8	wire 300.	Box 4942	.	-							
Comme Project Schools Contracts of Warrent College Col				S	YEACUSE.	NY 13221	Am):	3	1 S	Sec.	3				
Comme Project Schools Contratts Regrects of Warrents 10/4/10/4/10/4/10/4/10/4/10/4/10/4/10/4		Befreit	, ,		ď	int Marne				S	Aug			Dete	Tene
Committee Inc. A Committee In	Africana Ly	•	1		9	" Fases	3	Ę	Pare	K	E. Wa	3	FOLD	John	1336
Comme Project, Inc. *ICEY: Ad-Aqueous 14 Shudgs GW - Groundstein Ad-Aqueous PE - Perchant BA - Bottom Ant FA - Flyanh	1	1	1	THE	Adam	Schotz			1	25				10/4/09	1
Commit Project, Inc. A Committee of Commit	and and a	٢		þ											
Committe Project, Jan. * ICEY: Adj-Aqueous 14 Shidgs GW - Groundsrater A Committee Bang Company Of - Other PE - Perclaum BA - Bottom Adv FR - Flyach	acebred by						- 4								
Commit Project, Inc. Advante Bring Commit Project, Inc. Advante Bring Commit Project, Inc. Advante Bring Committee Bring Committee Bring Committee Bring Committee Bring Committee Bring Bring Bring Bring Bring Bring Bring	1										-				,
Commit Project, Jes. * ICEY: Ad-Aqueous NA-Homqueous St Shidgs GW - Groundsrain: A Commit Bring Company Of - Other PE - Perclaum BA - Bottom Adn FR - Ryanh Of - Other PE - Perclaum	Pathered by										- -				
A Counte Georgia Company A Counte Georgia Company OT - Other PE - Petroleum BA - Bottom Ash FA - Ryselt OT - Other PE - Petroleum BA - Bottom Ash FA - Ryselt					1		:,]	;				i		3
				11	Service of the servic		20 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -				F - 200	1			Combined

28

唯 [.	0	Autra /	ROPEC	CONTAIN PROJECTS of WALLAKFORD	Project or PO #			\prod		¥	To La	핕				
5 I	Address 534	530 Sorry Cheery Sr.	200	14 Sr.	Prove \$203) 294 - 149	1-14			×~	W V	W.	\	1			
الخد	Sale, (2)	CHY, SHIME, ZP. LAM. LINKFERED, CT.	200	anna	Proport attention Jessey Cresistant	4	_	×	ام اح	1032 	4	_	NA A			
3	å	į		angled by 70	CLER	Number	- N	13	(A)	\$ \\ \text{\ti}\}\\ \text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tett}\\ \text{\tex{\tex	<u></u>	- *				·
		Parktines	Palos	Semple description	nption	Containers	12	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ _	** **********************************	\			Remeda		
	146	100	3	wate Trulosson 114	03-07 614	-		2	-	\	-	ļ	1	2000		· ·
1							_	_			-					
							-	-			\vdash					,
							-	├		_	-	L				₁
						·	-	<u>.</u>	\Box	,	1	L) ::			1
						,	-	<u> </u>			14.					Í
]							-	مذ		۸.	-		1		Į.	
								· · ·			-					1
			N.	SOND TO: LIFE SCHENCE LABS	.E. LABS	14	_	· .				***		4		
				Soct BRITTE	Soct BRITTEN FIRED PARKULAN	*	-	\ \frac{1}{1}			-		7			j
				Suite 300.	Suite 300, Box 4942		1.	<u> </u>	<u>.</u>		.*	5				
_				SYRACUSE, NY 13221	NY 18221	Amil Samples	3		Ke	RECEIVING	٠,	•			331	
1 }		Some		Ē	frit Harne			31 1	8	Company	1		1	diam'r.	7	ki Fi
1	in the same of	へん	کی	١	160	CONNTR PRETECTS OF WALLINGFORD	17	Bore	B	7	ALLA	L.Fak	6	of the	0110	77
1		A CONTRACTOR OF THE PROPERTY O	-	West Adam	Adam Schotz		J	Ä	. "				2	1999	1025	
1	spinners (2						. :					4	7 ÷
1	Al proper											ŀ.				
7	Properties (by					_										
1	Ag passed	·	٠.		,											
			•	Committe Projects, Inc.	1034	AQ - Aqueou	*	į	1			8	a de la constant de l	- 98	1	
101	N P	ENER OF	E >	de Lano Anost, CN 2016 Publicat, AL STREP-2016 Tol SET SEE 2000	· .	10° 10	£ ,	¥.	5	4	(tem'A	÷	1	š		****
												•	•		٠	

	Ŝ	CONTAINT P	Kojecz	S of tubernies	PROJECTS OF WHITHERED PROJECT POS					Ara	payrou du			
Address	530	530 South	RY CHEERY ST.	y 5r.	Prons 4263 294 - 1649	1)294-	1		107/20		10	/	A	
City. State, Zip Judge L. 134	3	ANCO.	Sen. C.	T CLAPA P	Yester Jestes	3	1	1	//	€	EN.	-		
3	ž	Ē	a j	COO)	Type: Berrylad by 1000 to HARELER. Namb	-	•	43. (Sk.)	188 199	10)	<u></u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			1	Aunito .	Sample description	8	7	148 1791 1881		ANI Pin	_		Remerks	į
0	Johla Ger	4	3	hace (cal)	CA WALLEATEN HORDON IM	N	-	1		X	\prod		please erren	#X
+-										_		-		
											\perp			
+														
	İ													
+	1 .					+		-				+		
			33	SON TO: LIFE SCIENCE, LABS	HENCE, LABS							-	31	
+		7	-	Soct B	SOOD BRITTEN FIELD PARKULAY	MEKUM								
\dashv	1			Suire	Suire 300, Box 4942	42								
-				SYRACU	SYRKUSE, NY 13221		Amil: S	Symples Receiving	REC	elvink				
		Agrees and			Print Name				8	Company			Pets	Time
1	5	\ \{	7	7	Jasen fand		3	9	TROS	4	A. L.	FOLD	10,00	06.50
la la		W.	" All	det Po	Adom Schot	4		757	J				2-01 to/a/01	
	8	`		>									.	
5														
Property by	4													
(d)														

ENERGY MALLINGER

* KEY: AQ.-Aqueous MA.-Nonequeous SL.-Studge GW - Groundweter 80-808
OT - Other PE - Patroleum BA.- Bottom Ash FA - Pysech CA - Combined A

	Chest termin Contains Magicas of Librate Magaga Propos of Post Contains (2005) 294-144 Chester Seath Chesty St. Chester St. Chesty Chesty St. Chester St. Chesty Chesty St. Chester St. Chester St. Chesty Chesty St. Committee Chesty
--	---

Life Science Laboratories, Inc.

Sample Receipt Checklist

Client Name: COVANTA	•	Date and Time Receiver	i: 16/11/2007 10:25:00 AM
Work Order Humber 6716661		Received by:	h
Checkfiel completed by:	10/11/07	. Reviewed by:	5 10/11/07
Matrix Carrier	name: <u>UPS</u>		
Shipping contains/cooler in good condition?	Yes 🗹	No 🗀 Not Prese	at 🗆
Custody seels intact on shipping container/cooler?	Yes 🛄	No Not Press	nt 🗹
Custody seeks intact on sample bottles?	Yes 🗔	No 🗆 Not Press	nt 🗹
Chain of custody present?	Yee 😾	No 🗆	
Chain of custody signed when relinquished and received?	Y•• 🗷	No 🗆	
Chain of custody % nee with sample labels?	Yes 🗹	No 🗔	•
Samples in proper container/builds?	Yes 🗹	No 🛄	
Sample containers intact?	Yes 🗹	No 🗆	
Sufficient sample volume for indicated text?	Yes 52	No 🗆	
All samples received within holding time?	Y≃ 521	No []	
Container/Temp Blank temperature in compliance?	Yes 32	No 🗀	
Water - VOA visit have zero headspace?	Yes 🗀	No 🗆 No VQA visi	is automitted 🗹
ter		_	-

Comments:

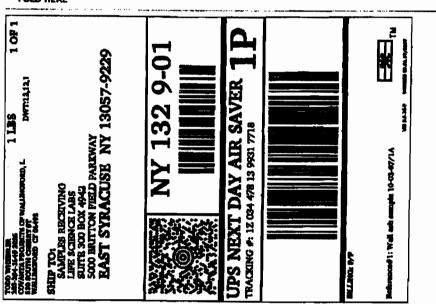
Corrective Action:

UPS Internet Shipping: Shipment Label

Page 1 of 1

UPS Internet Shipping: View/Print Label

- Print the label(s): Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- Feld the printed label at the dotted line. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
- 3. GETTING YOUR SHIPMENT TO UPS


Customers without a Daily Pickup

- Schedule a same day or future day Pictorp to have a UPS driver pickup all of your Internet Shipping packages.
- Hand the package to any UPS driver in your area.
- * Take your package to any location of The UPS Store[®], UPS Drop Box, UPS Customer Center, UPS Alliances (Office Depot[®] or Staples[®]) or Authorized Shipping Outlet near you. Items sent via UPS Return ServicesSM (Including via Ground) are accepted at Drop Boxes.
- To find the location nearest you, please visit the 'Find Locations' Quick link at ups.com.

Customers with a Daily Pickup

" Your driver will pickup your shipment(s) as usual.

FOLD HERE

https://www.ups.com/uis/create?ActionOriginPair-print__PrinterPage&POPUP_LEVE... 10/10/2007

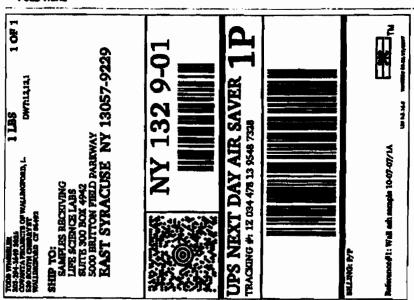
UPS Internet Shipping: Shipment Label

Page 1 of 1

UPS Internet Shipping: Ylew/Print Label

- Print the label(s): Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the dotted line. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire
- 3. GETTING YOUR SKIPMENT TO UPS
 Contamors without a Daily Pickup

 " Schedule a same day or future day Pickup to have a UPS driver pickup all of your Internet Shipping packages.


 Hand the package to any UPS driver in your area.

 - Take your package to any location of The UPS Store[®], UPS Orop Box, UPS Customer Center, UPS Alliances (Office Depot® or Staples®) or Authorized Shipping Outlet near you. Items sent via UPS Return Services 504 (Including via Ground) are accepted at Drop Boxes.
 - To find the location nearest you, please visit the 'Find Locations' Quick link at ups.com.

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

FOLD HERE

https://www.ups.com/uis/creste?ActionOriginPair=print__PrinterPage&POPUP_LEVE... 10/10/2007

Page 1 of 1

UPS Internet Shipping: Shipment Label

UPS Internet Shipping: View/Print Label

- Print the lebel(s): Select the Print button on the print dielog box that appears. Note: If
 your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed lebel at the detted line. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
- 3. GETTING YOUR SHIPMENT TO UPS
 - Customers without a Daily Pickup
 - Schedule a same day or future day Pickup to have a UPS driver pickup all of your Internet Shipping packages.
 - Hand the package to any UPS driver in your area.
 - * Take your package to any location of The UPS Store®, UPS Drop Box, UPS Customer Center, UPS Affiances (Office Depot® or Staples®) or Authorized Shipping Outlet near you. Items sent via UPS Return Services SM (Including via Ground) are accepted at Drop Вожев.
 - To find the location nearest you, please visit the 'Find Locations' Quick link at ups.com.

Customers with a Daily Pickup

- Your driver will pickup your shipment(s) as usual.

100 × JPS NEXT DAY AIR SAVER 120 (1: Wall ach smught 09-37-28-07 THE STATE OF

FOLD HERE

https://www.ups.com/uis/create?ActionOriginPair=print PrinterPage&POPUP LEVEL... 10/9/2007

ASH CHARACTERIZATION REPORT SOUTHEAST CONNECTICUT RESOURCES RECOVERY FACILITY PRESTON, CONNECTICUT

Covarita SECONN 2007 Ash Characterization Laboratory Data and Statistical Analysis

				ဒိ	Concentration Levels (mg/l)	Levels (mg/)			
Sample	Date of	Arsenic	Bartum	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Number	Composite	(As)	(B)		(3)	(Pb)	(Hg)	(Se)	(Ag)
2/19-A	2/19/2007	0.010	0.377	1.400	0.010	0.826	0.0010	0.050	0.010
2/20-A	2/20/2007	0.010	0.630	0.015	0.010	0.010	0.0010	0.050	0.010
2/21-A	2/21/2007	0.010	0.549	0.011	0.012	0.010	0.0010	0.050	0.010
2/22-A	2722/2007	0.010	0.615	0.010	0.015	0.010	0.0010	0.050	0.010
2/26-A	2/26/2007	0.010	0.468	0.039	0.010	0.013	0.0010	0.050	0.010
2/27-A	222772007	0.010	0.670	0.062	0.010	0.016	0.0010	0.050	0.010
2/28-A	2/28/2007	0.010	0.584	0.010	0.010	0.010	0.0010	0.050	0.010
3/01-A	3/1/2007	0.010	0.486	0.012	0.010	0.010	0.0010	0.050	0.010
3/02-A	3/2/2007	0.010	0.692	0.010	0.010	0.010	0.0010	0.050	0.010
3/06-A	3/5/2007	0.010	0.553	0.031	0.010	0.010	0.0010	0.050	0.010
3/06-A	3/6/2007	0.010	0.644	0.111	0.010	0.457	0.0010	0.050	0.010
3-07A	3/7/2007	0.010	0.580	0.084	0.010	0.073	0.0010	0.050	0.010
3/08-A	3/8/2007	0.010	0.433	1.880	0.010	1.690	0.0010	0.050	0.010
3/09-A	3/9/2007	0.010	0.295	0.019	0.010	0.010	0.0010	0.050	0.010
				Statistical Analysis	Analysis				
Regulaorty	Regulaorty Threshold	5.00	100.00	1.00	5.00	5.00	0.20	1.00	5.00
Number	Number of Samples	14	14	14	14	14	14	14	14
Sum	Sum of the								
Conce	Concentrations	0.1	7.576	3.6937	0.1474	3,154	0.014	0.7	0.14
mns)	(Sum of the								
Concen	Concentrations)*	0.0196	57.395776	13.6434197	0.02172676	9.947716	0.000196	0.49	0.0196
Sum of the	Sum of the Squares of						7,000	2000	7
TIP COX	the Concentrations	8.0	4.2/4154	5.521/1726.6	0.0015605	3.75369156	0.00014	0000	0.0014
Student (Aug tailed	Student "I" Constant								
interval	interval (2) 80%, t.20)	1.35	85	1.35	38	1.35	38	38.	1.35
- ₹	Mean, x	0.010	0.541	0.264	0.011	0.225	0.001	0.050	0.010
Varie	Variance, s ²	0.00	0.01	0.35	0.00	0.23	0.0	0.00	00.0
Standard	Standard Deviation,s	00'0	0.12	0.59	00.00	0.48	00:00	0.00	0.00
Standan	Standard Error, s,	00.00	0.03	0.16	00.00	0.13	0.00	0.00	0.00
Upper C	Upper Confidence	950			0.044	64.0	200	900	0.50
11 100 Val	INCHES (TOT IT WAIL)	0.010	200.0	0.4//	7.0.0	34.0	3.5	255.5	2.5.5

Analytical Results

Regarding:

ERIK FREIDENFELDS COVANTA SOUTHEASTERN CONNECTICUT COMPANY 132 MILITARY HIGHNAY PRESTON, CT 06365

ERIK FREIDENFELDS COVANTA SOUTHEASTERN CONNECTICUT COMPANY 132 MILITARY HIGHWAY PRESTON, CT 06365

Account No: W07 Project No: W07	077, COVANTA SOUTHEASTERN CONNECTICUT CO 077, COVANTA SOUTHEASTERN CONNECTICUT C	OMPANY OMPANY	P.O. No: 0461214 PWSID No:	Inv. No:
Sample Number 12252528-1	Sample Description 2-19-A LDMED ASM COMPOSITE Received Tamp: 57°F Loed (Y/N): N	Exceeds recommended	Samp. Date/Time/Temp 02/19/07 00:00am NA°F temperature	Sampled by Customer Sampled
PATAMETER SILVER-TCLP ARSENIC-TCLP BARTINH-TCLP CARMIUM-TCLP CARMIUM-TCLP HERCHY-TCLP SELENIUM-TCLP TCLP EXTRACTI PH-TCLP FINAL PH-TCLP HERTE PH-TCLP INIT.	SWB46 Method 7470 SWB46 Method 6010B SWB46 Method 6010B ON SWB46 Method 1311 EPA 600 Method 150.1 EPA 600 Method 150.1	Result ND mg/1 ND mg/1 0.377 mg/1 1.40 mg/1 ND mg/1 ND mg/1 ND mg/1 0.826 mg/1 ND mg/1 COMPLETE 6.34 units 5.26 units 11.5 units		
Sample Number 12252528-2 Parameter STLVER-TCLP	Sample Description 2-20-A LIMED ASH COMPOSITE Received Temp: 57°F Toed (Y/N): N Method SW846 Method 6010B	Exceeds recommended Result ND mg/l	Samp. Date/Time/Temp 02/20/07 00:00am NA°F temperature RLs 0.0100 mg/1	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:120M BAB
ARSENIC-TCLP BARIUM-TCLP	SN846 Method 6010B SN846 Method 6010B	ND mg/1 0.630 mg/1	0.0100 mg/l 0.0100 mg/l	04/11/07 12:12PM BAB 04/11/07 12:12PM BAB

Page 1 of 4

Unserialized Copy

⁻ A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
- Definitions: ND-not detected; NEG-negative; POS-positive; COL-colonies; RLs-laboratory reporting limits; L/A-laboratory

⁻ Definitions: ND-not detected; NEC-negative; POS-positive; COL-colonies; RLs-laboratory reporting limits; L/A-laboratory accident; TNTC-too numerous to count

A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.

- The test "pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.

- Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted..

- OC cartification ID's: Southampton (NELAP) PADEP 09-131, NDEP PA166, FL E87954, Bioassay PA034.NON-NELAP labs: Wind Gep-NJ PA001, All test-NJ 02015, Vineland-NJ 06005; PA 68-580.

- All samples are collected as "grab" samples unless otherwise identified.

- MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program "LTVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Sample Number Sample Description

Analytical Results

Sampled by

Account No: W07077,	COVANTA SOUTHEASTERN CONNECTICUT COMPANY	P.O. No: D461214	Inv. No:
Project No. NO7077	CYNANTA SCHTHEASTERN CONNECTICUT COMPANY	PMSID No:	

1.2252528-2		EMED ASH COMPOSITE		02/20/07 00:00am NA F	Customer Sampled
Parameter CADHIUM-TCLP CHROHIUM-TCLP HERORY-TCLP LEAD-TCLP SELENUM-TCLP TCLP EXTRACTIO		Method SW846 Method 6010B SW846 Method 6010B SW846 Method 7470 SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B	Result 0.0148 mg/l ND mg/l ND mg/l ND mg/l ND mg/l COMPLETE	RLs 0.0100 mg/1 0.0100 mg/1 0.00100 mg/1 0.0100 mg/1 0.0500 mg/1	Test Date, Time, Analyst 04/11/07 12:12PM BAB 04/11/07 12:12PM BAB 04/11/07 03:24PM CC 04/11/07 12:12PM BAB 04/11/07 12:12PM BAB 03/29/07 01:55PM KOR
PH-TCLP FINAL		EPA 600 Method 150.1	9.22 units	0.100 units	03/30/07 08:45PM NOR
PH-TCLP HEATEL	D	EPA 600 Mathod 150.1	3.81 units		03/15/07 11:30AM KOR
PH-TCLP INITIO	AL	SW846 Method 1311	11.3 units	0.100 units	03/15/07 00:30AM KOR
0-1-a 13-mba-	Comple De	mayint ion		Samp. Date/Time/Temp	Sampled by
Sample Number 1,2252528~3	2-21-A L	mecription MED ASH COMPOSITE Temp: 57°F load (Y/N): N	Exceeds recommended	02/21/07 00:00am NA°F	Customer Sampled
1.2252528-3	2-21-A L	IMED ASH COMPOSITE	Exceeds recommended Result	02/21/07 00:00am NA F temperature	Customer Sampled
1.2252528-3 Parameter	2-21-A L	DMED ASH COMPOSITE Temp: 57°F load (Y/N): N		02/21/07 00:00am NA*F temperature	
L2252528~3 Parameter SILVER-TCLP	2-21-A L	MED ASH COMPOSITE Temp: 57°F load (Y/N): N Method	Result	02/21/07 00:00am NA F temperature	Customer Sampled Test Date, Time, Analyst
1.2252528-3 Parameter	2-21-A L	MED ASH COMPOSITE Temp: 57°F load (Y/N): N Method SW846 Method 6010B	Result ND mg/l	02/21/07 00:00am NA ^a F temperature RLs 0.0100 mg/1	Customer Sampled Test Date, Time, Analyst 04/11/07 12:16FM BAB
L2252528-3 Parameter SILVER-TCLP ARSENIC-TCLP	2-21-A L	MED ASH COMPOSITE Temp: 57°F load (Y/N): N Method SN846 Method 6010B SW846 Method 6010B	Result ND mg/l ND mg/l	02/21/07 00:00am NA*F temperature RLs 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analyst 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB
12252528~3 Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP	2-21-A LI Received	MED ASH COMPOSITE Temp: 57°F load (Y/N): N Method SNB46 Method 6010B SWB46 Method 6010B SWB46 Method 6010B	Result ND mg/1 ND mg/1 0.549 mg/1	02/21/07 00:00am NA*F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analyst 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB
Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CADMIUM-TCLP	2-21-A LI Received	MED ASH COMPOSITE Temp: 57°F load (Y/N): N Method SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B	Result ND mg/1 ND mg/1 0.549 mg/1 0.0109 mg/1	02/21/07 00:00am NA*F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Test Date, Time, Analyst 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB
Parameter SILVER-TCLP ARSENIC-TCLP EARIUM-TCLP CARMIUM-TCLP CHRONIUM-TCLP	2-21-A LI Received	MED ASH COMPOSITE Temp: 57°F load (Y/N): N Method SW846 Method 6010B	Result ND mg/1 ND mg/1 0.549 mg/1 0.0109 mg/1 0.0121 mg/1	02/21/07 00:00am NA°F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Test Date, Time, Analyst 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB
Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CADMIUM-TCLP CHROMIUM-TCLP MERCURY-TCLP	2-21-A L3 Received	MED ASH COMPOSITE Temp: 57°F load (Y/N): N Method SW846 Method 6010B SW846 Method 7470	Result ND mg/1 ND mg/1 0.549 mg/1 0.0109 mg/1 0.0121 mg/1 ND mg/1	02/21/07 00:00am NA*F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Test Date, Time, Analyst 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 03:26FM CC
Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CARMIUM-TCLP CHROMIUM-TCLP MERCURY-TCLP LEAD-TCLP	2-21-A LI Received	MED ASH COMPOSITE Temp: 57°F load (Y/N): N Method SNB46 Method 6010B	Result	02/21/07 00:00am NA*F temperature RLs 0.0100 mg/1	Test Date, Time, Analyst 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 12:16FM BAB 04/11/07 03:26FM CC 04/11/07 12:16FM BAB

3.46 units

11.0 units

Sample Number 1.2252528-4

PH-TCLP HEATED

PH-TCLP INITIAL

Sample Description

2-22-A LIMED ASH COMPOSITE

Samp. Date/Time/Temp 02/22/07 00:00am NA F

0.100 units

0.100 units

Samp. Date/Time/Temp

Sampled by Customer Sampled

03/15/07 11:30AM NOR 03/15/07 08:30AM NOR

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
- Definitions: ND-not detected; NDG-negative; POS-positive; COL-colonies; RLs-laboratory reporting limits; L/A-laboratory

EPA 600 Method 150.1

SW846 Method 1311

- Definitions: ND-not detected; NEG-negative; POS-positive; COL-colonies; RLs-laboratory reporting limits; L/A-laboratory accident; TNTC-too numerous to count

 A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

 All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.

 The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.

 Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.

 QC certification ID's: Southampton (NELAP) PADEP 09-131,NUDEP PA166, FL E87954, Bioassay PA034.NON-NELAP labs: Wind Gep-NJ PA001,Alltest-NJ 02015,Vineland-NJ 06005;PA 68-580.

 All samples are collected as "grab" samples unless otherwise identified.

 MCLP is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

 Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's intermet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 2 of 4

Unserialized Copy

Thomas | Ames
Thomas J. Hinas, President

Account No: WO' Project No: WO'		SOUTHEASTERN CONNECTICUT OF		P.O. No: 0461214 PWSID No:	Inv. No:
	Received Temp	: 57°F Iced (Y/N): N	Exceeds recommended	temperature	
Parameter		Method	Result	RLS	Test Date, Time, Analyst
SILVER-TCLP		SW846 Method 6010B	ND mg/1	0.0100 mg/1	04/11/07 12:18PM BAB
ARSENIC-TCLP		SW846 Method 6010B	ND mg/1	0.0100 mg/1	04/11/07 12:18PH BAB
BARIUM-TCLP		SW846 Method 6010B	0.615 mg/l	0.0100 mg/1	04/11/07 12:18PM BAB
CADMIUM-TCLP		SW846 Method 6010B	0.0103 mg /1	0.0100 mg/l	04/11/07 12:18PM BAB
CHROMIUM-TCLE	?	SW846 Method 6010B	0.0153 mg/1	0.0100 mg/1	04/11/07 12:18PM BAB
MERCURY-TCLP		SW846 Method 7470	ND mg/l	0.00100 mg/l	04/11/07 03:31FM CC
LEAD-TCLP		SW846 Method 6010B	ND mg/1	0.0100 mg/l	04/11/07 12:18PM BAB
SELENIUM-TCLE	?	SW846 Method 6010B	ND mg/l	0.0500 mg/l	04/11/07 12:18PM BAB
TCLP EXTRACT!	ION	SW846 Method 1311	COMPLETE		03/29/07 01:55PM KOR
PH-TCLP FINAL	L	EPA 600 Method 150.1	9.35 units	0.100 units	03/30/07 08:45AM KOR
PH-TCLP HEATE	3D	EPA 600 Method 150.1	. 3.68 units	0.100 units	
PH-TCLP INITI	IAL	SW846 Method 1311	11.1 unita	0.100 units	03/15/07 08:30AM KOR
	Sample Descri			Samp. Date/Time/Temp	Sampled by
Sample Number L2252528-5	2-26-A LIMED	ASH COMPOSITE		02/26/07 00:00am NA F	Sampled by Customer Sampled
	2-26-A LIMED			02/26/07 00:00am NA F	
1.2252528-5	2-26-A LIMED	ASH COMPOSITE		02/26/07 00:00am NA F	
L2252528-5	2-26-A LIMED	ASH COMPOSITE : 57°F load (Y/N): N	Exceeds recommended	02/26/07 00:00am NA F temperature	Customer Sampled
L2252528-5 Parameter	2-26-A LIMED	ASH COMPOSITE : 57°F Iced (Y/N): N Method	Exceeds recommended Result	02/26/07 00:00am NA®F temperature	Customer Sampled Test Date, Time, Analyst
L2252528-5 Parameter SILVER-TCLP	2-26-A LIMED	ASH COMPOSITE : 57°F Iced (Y/N): N Method SW846 Method 6010B	Exceeds recommended Result ND mg/1	02/26/07 00:00am NA®F temperature RLs 0.0100 mg/l	Customer Sampled Test Date, Time, Analyst 04/11/07 12:30PM BAB
L2252528-5 Parameter SILVER-TCLP ARSENIC-TCLP	2-26-A LIMED	ASH COMPOSITE: 57°F Iced (Y/N): N Method SW846 Method 60108 SW846 Method 60108	Result ND mg/1 ND mg/1	02/26/07 00:00am NA°F temperature RLs 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analyst 04/11/07 12:30FM BAB 04/11/07 12:30FM BAB
L2252528-5 Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP	2-26-A LIMED A Received Temp	ASH COMPOSITE: : 57°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B	Exceeds recommended Result ND mg/1 ND mg/1 0.468 mg/1	02/26/07 00:00am NA°F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analyst 04/11/07 12:30FM BAB 04/11/07 12:30FM BAB 04/11/07 12:30FM BAB
L2252528-5 Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CAUMIUM-TCLP	2-26-A LIMED A Received Temp	ASH COMPOSITE: 57°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B	Result ND mg/1 ND mg/1 0.468 mg/1 0.0390 mg/1 ND mg/1 ND mg/1	02/26/07 00:00am NA°F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analyst 04/11/07 12:30FM BAB 04/11/07 12:30FM BAB 04/11/07 12:30FM BAB 04/11/07 12:30FM BAB
L2252528-5 Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CADMIUM-TCLP CHROMIUM-TCLF	2-26-A LIMED A Received Temp	ASH COMPOSITE: 57°F Iced (Y/N): N Method SW846 Method 6010B	Result ND mg/1 ND mg/1 0.468 mg/1 0.0390 mg/1 ND mg/1	02/26/07 00:00am NA°F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analyst 04/11/07 12:30PM BAB
L2252528-5 Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CAUMIUM-TCLP CHEMIUM-TCLF MERCHY-TCLF	2-26-A LIMED A Received Temp	ASH COMPOSITE: 57°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 7470	Result ND mg/1 ND mg/1 0.468 mg/1 0.0390 mg/1 ND mg/1 ND mg/1	02/26/07 00:00am NA°F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Test Date, Time, Analyst 04/11/07 12:30FM BAB 04/11/07 03:33FM CC 04/11/07 12:30FM BAB 04/11/07 12:30FM BAB 04/11/07 12:30FM BAB 04/11/07 12:30FM BAB
Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CAIMIUM-TCLP CHROMIUM-TCLP MERCURY-TCLP LEAD-TCLP	2-26-A LIMED A	ASH COMPOSITE: 57°F Iced (Y/N): N Method SW846 Method 6010B	Result	02/26/07 00:00am NA°F temperature RLs 0.0100 mg/1	Test Date, Time, Analyst 04/11/07 12:30FM BAB 03/29/07 01:55FM KOR
PARAMETER PARAMETER SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CARMIUM-TCLP CHROMIUM-TCLP MERCURY-TCLP LEAD-TCLP SELENIUM-TCLP	2-26-A LIMED A Received Temp	ASH COMPOSITE: 57°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 1311 EPA 600 Method 150.1	Result ND mg/1 ND mg/1 0.468 mg/1 0.0390 mg/1 ND mg/1 ND mg/1 ND mg/1 O.0128 mg/1 ND mg/1 COMPLETE 8.15 units	02/26/07 00:00am NA°F temperature RLs 0.0100 mg/1	Customer Sampled Test Date, Time, Analyst 04/11/07 12:30FM BAB 03/29/07 01:55FM KOR 03/30/07 06:45AM KOR
L2252528-5 Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CHROWINM-TCLP CHROWINM-TCLP HERCURY-TCLP LEAD-TCLP SELENIUM-TCLP TCLP EXTRACT	2-26-A LIMED Received Temp	ASH COMPOSITE: 57°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 7470 SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B SW846 Method 1311	Result	02/26/07 00:00am NA°F temperature RLs 0.0100 mg/1	Test Date, Time, Analyst 04/11/07 12:30FM BAB 03/29/07 01:55FM KOR

- 1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.
- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
 Definitions: ND-not detected; NEG-negative; POS-positive; COL-colonies; RLs-laboratory reporting limits; L/A-laboratory

- Definitions: ND-mot detected; NEC-magative; POS-positive; COL-colonies; RLs-laboratory reporting limits; L/A-laboratory accident; TNTC-too numerous to count

 A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

 All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.

 The test*pH lab*is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.

 Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted..

 QC certification ID's: Southampton (NELAP) PADEP 09-131, NJDEP PA166, FL E87954, Bioassay PA034.NCN-NELAP labs: Wind Gap-NJ PA001, Alltest-NJ 02015, Vineland-NJ 06005; PA 68-580.

- PADU; Alltest-No Uzuls, Vineland-No uzuus; PA 60-500.

 All semples are collected as "grab" samples unless otherwise identified.

 MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs-customer specific permit limits.

 Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 3 of 4

Account No: W07077, COVANTA SOUTHEASTERN CONNECTICUT COMPANY COVANTA SOUTHEASTERN CONNECTICUT COMPANY Project No: W07077,

P.O. No: 0461214

Inv. No:

12252528-2:

1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

The TCLP extraction was performed in accordance with 40 CFR parts 261,24 and 268.7.

1.2252528-4:

The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

1.2252528-5:

1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
 Definitions: ND-not detected; NEG-negative; POS-positive; COL-colonies; RLs-laboratory reporting limits; L/A-laboratory accident; TNTC=too numerous to count
- A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

- A result marked with "LKY" indicates that the result was calculated and reported on a dry weight basis.

 All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.

 The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.

 Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted..

required holding time unless otherwise noted...

— QC certification ID's: Southampton (NEIAP) PADEP 09-131,NJDEP PA166, FL E87954, Bioassay PA034.NON-NEIAP labs: Wind Gap-NJ PA001,Alltest-NJ 02015,Vineland-NJ 06005;PA 68-580.

— All samples are collected as "grab" samples unless otherwise identified.

— MCI= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 4 of 4

Unserialized Copy

Thomas / Ames
Thomas J. Hines, President

Regarding:

ERIK FREIDENFELDS COVANTA SOUTHEASTERN CONNECTICUT COMPANY 132 MILITARY HIGHWAY PRESTON, CT 06365

ERIK FREIDENFELDS
COVANTA SOUTHEASTERN CONNECTICUT COMPANY 132 MILITARY HIGHWAY PRESTON, CT 06365

	077, COVANTA SOUTHEASTERN CONNECTICUT C		Inv. No:
Sample Number L2252893-1	Sample Description 2-27-A LIMED ASH COMPOSITE Received Temp: 57°F Iced (Y/N); N	Samp. Date/Time/Temp 02/27/07 00:00am NA°F Exceeds recommended temperature	Sampled by Customer Sampled
Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CADMIUM-TCLP CADMIUM-TCLP LEAD-TCLP LEAD-TCLP SELENIUM-TCLP TCLP EXTRACTI PH-TCLP FIRAL PH-TCLP INTIL PH-TCLP INTIL	SW846 Method 7470 SW846 Method 60108 SW846 Method 60108 ON SW846 Method 1311 EPA 600 Method 150.1 D EPA 600 Method 150.1	Result RLs ND mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0670 mg/l 0.0100 mg/l 0.0670 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0157 mg/l 0.0100 mg/l 0.0157 mg/l 0.0500 mg/l 0.0	03/19/07 01:25PM KOR
Sample Number 1,2252893-2	Sample Description 2-28-A LIMED ASH COMPOSITE Received Temp: 57°F Iced (Y/N): N	Samp. Date/Time/Temp 02/28/07 00:00am NA°F Exceeds recommended temperature	Sampled by Customer Sampled
Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP	Method SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B	Result RLs ND mg/1 0.0100 mg/1 ND mg/1 0.0100 mg/1 0.584 mg/1 0.0100 mg/i	Test Date, Time, Analyst 04/11/07 12:36FM BAB 04/11/07 12:36FM BAB 04/11/07 12:36FM BAB

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
 Definitions: ND-not detected; NED-negative; POS-positive; COL-colonies; RLs-laboratory reporting limits; L/A-laboratory accident; TMTO-too numerous to count
 A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.
 All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.
 The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.
 Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.
 QC cartification ID's: Southampton (NELAP) PADEP 09-131,NJDEP PA166, FL E87954, Bioassay PA034.NON-NELAP labs: Wind Gap-NJ PA001,Alltest-NJ 02015,Vineland-NJ 06005;PA 68-580.
 All samples are collected as "grab" samples unless otherwise identified.
 MCLF is the EPA recommended "maximum contaminant level" for a parameter. PLs-customer specific permit limits.
 Regulatory authorities are assessing substantial fines for testing ordssions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. (C's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 1 of 4

Unserialized Copy

	COVANTA SOUTHEASTERN CONNECTICUT CO		P.O. No: PMSID No:	Inv. No:
	le Description -A LIMED ASH COMPOSITE		Samp. Date/Time/Temp 02/28/07 00:00am NA°F	Sampled by Customer Sampled
Parameter	Method	Result	RLS	Test Date, Time, Analyst
CADMIUM-TCLP	SW846 Method 6010B	ND mg/1	0.0100 mg/l	04/11/07 12:36PM BAB
CHROMIUM-TCLP	SW846 Method 6010B	ND mg/l	0.0100 mg/l	04/11/07 12:36PM BAB
MERCURY-TCLP	SW846 Nethod 7470	ND mg/l	0.00100 mg/l	04/11/07 03:37PM CC
LEAD-TCLP	SW846 Method 6010B	NTD mg/1	0.0100 mg/l	04/11/07 12:36PM BAB
SELENIUM-TCLP	SW846 Method 6010B	ND mg/l	0.0500 mg/l	04/11/07 12:36PM BAB
TCLP EXTRACTION	SW846 Method 1311	COMPLETE		03/29/07 01:55PM KOR
PH-TCLP FINAL	EPA 600 Method 150.1	9.35 units	0.100 units	03/30/07 08:45 AM KO R
PH-TCLP HEATED	EPA 600 Method 150.1	4.26 units		
PH-TCLP INITIAL	SW846 Method 1311	11.3 units	0.100 units	03/ <u>19/07 09:45AM KOR</u>
	-A LIMED ASH COMPOSITE Lived Temp: 57°F Ideal (Y/N): N	Exceeds recommended	03/01/07 00:00am NA*F temperature	Customer Sampled
Parameter	Method	Result	RIJS	Test Date, Time, Analyst
SILVER-TCLP	SW846 Method 6010B	ND mg/1	0.0100 mg/l	04/11/07 12:39PM BAB
ARSENIC-TCLP	SW846 Method 6010B	ND mg/l	0.0100 mg/1	04/11/07 12:39FM BAB
BARIUM-TCLP	SW846 Method 6010B	0.486 mg/l	0.0100 mg/l	04/11/07 12:39PM BAB
CADMIUM-TCLP	SW846 Method 6010B	0.0123 mg/1	0.0100 mg/l	04/11/07 12:39PM BAB
CHROMIUM-TCLP	SW846 Method 6010B	ND mg/1	0.0100 mg/l	04/11/07 12:39PM BAB
MERCURY-TCLP	SW846 Method 7470	ND mg/l	0.00100 mg/l	04/11/07 03:39EM CC
LEAD-TCLP	SW846 Method 6010B	ND mg/l	0.0100 mg/l	04/11/07 12:39PM BAB
SELENTUM-TCLP	SW846 Method 6010B	ND mg/1	0.0500 mg/l	04/11/07 12:39PM BAD
TCLP EXTRACTION	SW846 Method 1311	COMPLETE		03/29/07 01:55PM NOR
PH-TCLP FINAL	EPA 600 Method 150.1	9.00 units	0.100 units	03/30/07 08:45MM NOR
PH-TCLP HEATED	EPA 600 Method 150.1	4.74 unita	0.100 whits	03/19/07 01:25PM KOR
PH-TCLP INITIAL	SW846 Method 1311	10.9 units	0.100 units	03/19/07 Q9:45AM KOR
	e Description A LIMED ASH COMPOSITE		Samp. Date/Time/Temp 03/02/07 00:00am NA°F	Sampled by Customer Sampled

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs. - Definitions: ND-not detected; NEO-negative; POS-positive; COI-colonies; RLs-laboratory reporting limits; I/A-laboratory

- Definitions: ND-not detected; NELT-negative; POS-positive; COL-colonies; RLS-laboratory reporting limits; L/A-laboratory accident; TNTC-too numerous to count
- A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.
- All analysis, except field tests are conducted in Southempton, PA unless otherwise identified.
- The test-ph lab"s analysis four pressipt at the laboratory, the result will not be suitable for regulatory purposes.
- Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.
- CC certification ID's: Southempton (NELAP) PADEP 09-131,NUDEP PA166, FL 837954, Bioassay PA034.NON-NELAP labs: Wind Gap-NJ PA001, Alltest-NJ 02015, Vineland-NJ 06005;PA 68-580.

PAON; Alltest-NJ UZUIS, Vineland-NJ VBVUS/PR 88-98U.

All samples are collected as "grab" samples unless otherwise identified.

- MCI» is the EFA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 2 of 4

		OUTHEASTERN CONNECTICUT O OUTHEASTERN CONNECTICUT O		P.O. No: PMSID No:	Inv. No:
	Received Temp:	57°F Iced (Y/N): N	Exceeds recommended	temperature	
Parameter		Method	Result	RLs	Test Date, Time, Analyst
SILVER-TCLP		SW846 Method 6010B	ND mg/l	0.0100 mg/1	04/11/07 12:42PM BAB
ARSENIC-TCLP		SW846 Method 6010B	ND mg/l	0.0100 mg/l	04/11/07 12:429M BAB
BARTUM-TCLP		SW846 Method 60109	0.692 mg/l	0.0100 mg/l	04/11/07 12:42PM BAB
CAUMIUM-TCLP		SW846 Method 6010B	ND mg/1	0.0100 mg/l	04/11/07 12:42PM BAB
CHROMIUM-TCLE	P	SW846 Method 6010B	ND mg/l	0.0100 mg/l	04/11/07 12:42PM BAB
MERCURY-TCLP		SW846 Method 7470	NED mg/1	0.00100 mg/1	04/11/07 03:40PM CC
LEAD-TCLP		5W846 Method 6010B	ND mg/l	0.0100 mg/l	04/11/07 12:42PM BAB
SELENIUM-TCLE	P	5W846 Method 6010B	ND mg/1	0.0500 mg/l	04/11/07 12:42PM BAB
TCLP EXTRACT!	ION	SW646 Method 1311	COMPLETE	-	03/29/07 01:55 PM NO R
PH-TCLP FINAL	L	EPA 600 Method 150.1	9.58 units	0.100 units	03/30/07 08:45AM KOR
PH-TCLP HEATE	EID .	EPA 600 Method 150.1	4.82 units	0.1 0 0 units	03/19/07 01:25PM NOR
			94 6	0.100 units	03/19/07 09:45MM NOR
PH-TCLP INIT)	LAL	SW846 Method 1311	11.6 units	0.100 001163	02/13/01 03:42MS MOK
			11.6 Units		
ample Number	Sample Descrip	tion	11.6 Units	Samp. Date/Time/Temp	Sampled by
ample Number	Sample Descript 3-05-A LIMED A	tion	Exceeds recommended	Samp. Date/Time/Temp 03/05/07 00:00am NA°F	
ample Number 2252093-5	Sample Descript 3-05-A LIMED A	tion SH COMPOSITE 57°F load (Y/N): N Method	Exceeds recommended	Samp. Date/Time/Temp 03/05/07 00:00am NA*F temperatura	Sampled by Customer Sampled Test Date, Time, Analyst
ample Number 2252893-5	Sample Descript 3-05-A LIMED A	tion SH COMPOSITE 57°F load (Y/N): N	Exceeds recommended	Samp. Date/Time/Temp 03/05/07 00:00am NA*F temperature PLs 0.0100 mg/1	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:44EM BAB
ample Number 2252893-5 arameter	Sample Descript 3-05-A LIMED A	tion SH COMPOSITE 57°F load (Y/N): N Hethod SW846 Method 6010B SW846 Method 6010B	Exceeds recommended Result ND mg/l ND mg/l	Samp. Date/Time/Temp 03/05/07 00:00am NA*F temperature RLs 0.0100 mg/l 0.0100 mg/l	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB
ample Number 2252893-5 arameter SILVER-TCLP	Sample Descript 3-05-A LIMED A	tion SH COMPOSITE 57°F load (Y/N): N Method SW846 Method 6010B	Exceeds recommended Result ND mg/1 ND mg/1 0.553 mg/1	Samp. Date/Time/Temp 03/05/07 00:00am NA*F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:449M BAB 04/11/07 12:449M BAB 04/11/07 12:449M BAB
ample Number 2252093-5 arameter SILVER-TCLP ARSUNIC-TCLP BARIUM-TCLP CADMIUM-TCLP	Sample Descrip 3-05-A LIMED A Received Temp:	tion SH COMPOSITE 57°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B	Exceeds recommended Result ND mg/l ND mg/l 0.553 mg/l 0.0308 mg/l	Samp. Date/Time/Temp 03/05/07 00:00am NA°F temperature RLs 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB
ample Number 2252093-5 arameter SILVER-TCLP BARIUM-TCLP	Sample Descrip 3-05-A LIMED A Received Temp:	tion SH COMPOSITE 57°F Iced (Y/N): N Hethod SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B	Exceeds recommended Result ND mg/1 ND mg/1 0.553 mg/1	Samp. Date/Time/Temp 03/05/07 00:00am NA F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB
ample Number 2252093-5 arameter SILVER-TCLP ARSUNIC-TCLP BARIUM-TCLP CADMIUM-TCLP	Sample Descrip 3-05-A LIMED A Received Temp:	tion SH COMPOSITE 57°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 7470	Exceeds recommended Result ND mg/l ND mg/l 0.553 mg/l 0.0308 mg/l	Samp. Date/Time/Temp 03/05/07 00:00am NA*F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.00100 mg/1	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:449M BAB 04/11/07 12:449M BAB 04/11/07 12:449M BAB 04/11/07 12:449M BAB 04/11/07 12:449M BAB 04/11/07 03:429M CC
ample Number 2252893-5 arameter SILVER-TCLP ARSPHIC-TCLP BARIUM-TCLP CADMIUM-TCLP CHROMIUM-TCLP MERCURY-TCLP LEAD-TCLP	Sample Descrip 3-05-A LIMED A Received Temp:	SH COMPOSITE 57°F Iced (Y/N): N Method SW846 Method 6010B	Exceeds recommended Result ND mg/l ND mg/l 0.553 mg/l 0.0308 mg/l ND mg/l ND mg/l ND mg/l	Samp. Date/Time/Temp 03/05/07 00:00am NA°F temperature RLs 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 03:42PM CC 04/11/07 12:44PM BAB
ample Number 2252893-5 arameter SILVER-TCLP AMSENIC-TCLP CAROMIUM-TCLP CHROMIUM-TCLP MERCURY-TCLP	Sample Descrip 3-05-A LIMED A Received Temp:	tion SH COMPOSITE 57°F Iced (Y/N): N Method SN846 Method 6010B SN846 Method 7470 SN846 Method 6010B SN846 Method 6010B SN846 Method 6010B SN846 Method 6010B	Exceeds recommended Result ND mg/1 ND mg/1 0.553 mg/1 0.0308 mg/1 ND mg/1	Samp. Date/Time/Temp 03/05/07 00:00am NA*F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.00100 mg/1	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 03:42PM CC 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB
ample Number 2252893-5 arameter SILVER-TCLP AMSEMIC-TCLP DADMIM-TCLP CADMIM-TCLP CRECURY-TCLP LEAD-TCLP	Sample Descrip 3-05-A LDMED A Received Temp:	Method SM846 Method 6010B SW846 Method 6010B	Exceeds recommended Result ND mg/l ND mg/l 0.553 mg/l 0.0308 mg/l ND mg/l ND mg/l ND mg/l	Samp. Date/Time/Temp 03/05/07 00:00am NA°F temperature RLs 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 04/11/07 03:42PM CC 04/11/07 12:44PM BAB
Cample Number 2252893-5 Carameter SILVER-TCLP BARIUM-TCLP CADMILM-TCLP CROOMUM-TCLP MERCURY-TCLP LEAD-TCLP LEAD-TCLP	Sample Descrip 3-05-A LDMED A Received Temp:	SH COMPOSITE 57°F Iced (Y/N): N Method SN846 Method 6010B SN846 Method 1311 EPA 600 Method 150,1	Exceeds recommended Result ND mg/l ND mg/l 0.553 mg/l 0.0308 mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l SOMPLETE 8.58 units	Samp. Date/Time/Temp 03/05/07 00:00am NA°F temperature RLs 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l	Sampled by Customer Sampled Test Date, Time, Analyst 04/11/07 12:44PM BAB 04/11/07 12:44PM BAB 03/29/07 01:55PM NOR 03/30/07 08:45AM NOR
Cample Number 2252893-5 Carameter SILVER-TCLP ANSENIC-TCLP EARIUM-TCLP CAROMIUM-TCLP MERCUTY-TCLP SELENIUM-TCLP SELENIUM-TCLP TCLP EXTRACTI	Sample Descrip 3-05-A LIMED A Received Temp:	Method SM846 Method 6010B SW846 Method 6010B	Exceeds recommended Result ND mg/1 ND mg/1 0.553 mg/1 0.0308 mg/1 ND mg/1 ND mg/1 ND mg/1 ND mg/1 ND mg/1 COMPLETE	Samp. Date/Time/Temp 03/05/07 00:00am NA*F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.00100 mg/1 0.00100 mg/1 0.00100 mg/1 0.0000 mg/1	Sampled by Gustamer Sampled Test Date, Time, Analyst 04/11/07 12:449M BAB 04/11/07 12:449M BAB 04/11/07 12:449M BAB 04/11/07 12:449M BAB 04/11/07 12:449M BAB 04/11/07 03:429M CC 04/11/07 03:429M CC 04/11/07 12:449M BAB 04/11/07 12:449M BAB 03/29/07 01:559M NGR

1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
 Definitions: ND-mot detected; NEG-megative; PCS-positive; CCL-colonies; RLs-laboratory reporting limits; L/A-laboratory accident; TNTO-too numerous to count
 A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.
 All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.
 The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.
 Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.
 QC cartification ID's: Southampton (NELAP) PADEP 09-131,NJDEP PA166, FL E87954, Bioassay PA034.NCN-NELAP labs: Wind Gap-NJ PA001,Alltest-NJ 02015, Vineland-NJ 06005; PA 68-580.
 All samples are collected as "GraPh" agmiles unless otherwise identified.

- PA00, Alltest—NJ 02015, Vineland—NJ 06005; PA 68-580.

 All samples are collected as "grab" samples unless otherwise identified.

 MCL# is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

 Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 3 of 4

Unserialized Copy

Thomas | Ames
Thomas J. Hines, President

Account No: W07077, COVANTA SOUTHEASTERN CONNECTICUT COMPANY Project No: W07077,

COVANTA SOUTHEASTERN CONNECTICUT COMPANY

P.O. No: FWSID No:

Inv. No:

1.2252893-2:

1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

L2252893-3:

1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

L2252893-4:

1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

1.2252893-5:

1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.

Page 4 of 4

⁻ Definitions: ND-not detected; NEG-negative; POS-positive; COL-colonies; RLs-laboratory reporting limits; L/A-laboratory

accident; TNTO-too numerous to count

- A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

- All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.

- The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.

- Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.

required holding time unless otherwise noted.

— QC certification ID's: Southampton (NEIAP) PADEP 09-131,NJDEP PA166, FL E87954, Bioassay PA034.NON-NEIAP labs: Wind Gap-NJ PA001,Alltest-NJ 02015,Vineland-NJ 06005;PA 68-580.

— All samples are collected as "grab" samples unless otherwise identified.

— MCL= is the EPA recommended "maximum contaminant level" for a parameter. Pis=customer specific permit limits.

Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Regarding:

ERIK FREIDENFELDS COVANTA SOUTHERSTERN CONNECTICUT COMPANY 132 MILITARY HIGHMAY PRESTON, CT 06365

ERIK FREIDENFELDS COVANTA SOUTHEASTERN CONNECTICUT COMPANY 132 MILITARY HIGHMAY PRESTON, CT 06365

Account No: W07 Project No: W07	0077, COVANTA SOUTHEASTERN CONNECTICUT C		P.O. No: PMSID No:	Inv. No:
Sample Number L2261325-1	Sample Description 3-06-A LIMED ASH COMPOSITE Received Temp: 72°F Iced (Y/N): N	Exceeds recommended	Samp. Date/Time/Temp 03/06/07 00:00am NA°F temperature	Sampled by Customer Sampled
PARAMETER SILVER-TCLP ARSENIC-TCLP ARSENIC-TCLP BARIUM-TCLP CREMIUM-TCLP CREMIUM-TCLP SELENIUM-TCLP TCLP PETRACTI PH-TCLP FENAL PH-TCLP FENAL PH-TCLP INITI	SW846 Nethod 7470 SW846 Nethod 7470 SW846 Nethod 6010B SW846 Nethod 6010B SW846 Nethod 1311 EPA 600 Method 150.1 EPA 600 Method 150.1	Result ND mg/l ND mg/l O.644 mg/l 0.111 mg/l ND mg/l ND mg/l ND mg/l O.457 mg/l ND mg/l COMFIETE 8.06 units 4.81 units 10.6 units	RLs 0.0100 mg/l 0.100 units 0.100 units 0.100 units	Test Date, Time, Analyst 04/11/07 12:47PM BAB 03/29/07 01:55PM KOR 03/30/07 08:45AM KOR 03/22/07 08:45AM KOR 03/22/07 08:45AM KOR 03/22/07 08:45AM KOR
iample Number 2261325-2	Sample Description 3-07-A LIMED ASH COMPOSITE Received Temp: 72°F Iced (Y/N): N	Exceeds recommended	Samp. Date/Time/Temp 03/07/07 00:00am NA°F	Sampled by Customer Sampled
Parameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP	Method SW846 Method 60108 SW846 Method 60108 SW846 Method 60108	Result ND mg/l ND mg/l 0.580 mg/l	RLs 0.0100 mg/l 0.0100 mg/l 0.0100 mg/l	Test Date, Time, Analyst 04/11/07 12:50PM BAB 04/11/07 12:50PM BAB 04/11/07 12:50PM BAB

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.

 Definitions: ND-not detected; NEG-negative; PCS-positive; CCL-colonies; RLs-laboratory reporting limits; L/A-laboratory accident; TNTC-too numerous to count

 A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

 All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.

 The test*pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.

 Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.

 QC certification ID's: Southampton (NELAP) PADEP 09-131,NJDEP PA166, FL E87954, Bioassay PA034.NON-NELAP labs: Wind Gap-NJ PA001,Alltest-NJ 02015,Vineland-NJ 06005; PA 68-580.

 All samples are collected as "grab" samples unless otherwise identified.

 MCLs is the EPA recommended "maximum contraminant level" for a parameter. PLs-customer specific permit limits.

 Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. CC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 1 of 3

Unserialized Copy

		SOUTHEASTERN CONNECTICUT OF		P.O. No: PMSID No:	Inv. No:
Sample Number 2261325-2	Sample Descri 3-07-A LIMED	ption ASH COMPOSITE		Samp. Date/Time/Temp 03/07/07 00:00am NA*F	Sampled by Customer Sampled
arameter		Method	Result	RLs	Test Date, Time, Analys
CADHIUM-TCLP		SW046 Method 60108	0.0836 mg/l	0.0100 mg/1	04/11/07 12:50EM BAB
CHROMIUM-TCLP		SW846 Method 6010B	ND mg/l	0.0100 mg/1	04/11/07 12:50PM BAB
MERCURY-TCLP		SN846 Method 7470	ND mg/1	0.00100 mg/l	04/11/07 03:46PM CC
LEAD-TCLP		SW846 Method 6010B	0.0725 mg/l	0.0100 mg/1	04/11/07 12:50PM BAB
SELENIUM-TCLP		SW846 Method 6010B	ND mg/1	0.0500 mg/1	04/11/07 12:50PM BAB
TCLP EXTRACTIO	MC	SW846 Method 1311	COMPLETE	~	03/29/07 01:55PM KOR
PH-TCLP FINAL		EPA 600 Method 150.1	8.02 units	0.100 units	03/30/07 08:45AM KOR
PH-TCLP HEATER	b	EPA 600 Method 150.1	4.08 units	0.100 units	03/22/07 12:30PM ROR
PH-TCLP INITIA	RT	SW846 Method 1311	10.1 units	0.100 units	03/22/07 08:45AM KOR
ample Number 2261325-3	Sample Descri 3-08-A LIMED	ption ASH COMPOSITE		Samp. Date/Time/Temp 03/08/07 00:00am NA°F	Sampled by Customer Sampled
ample Number 2261325-3	Sample Descri 3-08-A LIMED	ption	Exceeds recommended	03/08/07 00:00am NA°F	
ample Number 2261325-3	Sample Descri 3-08-A LIMED	ption ASH COMPOSITE	Exceeds recommended Result	03/08/07 00:00am NA F temperature	Customer Sampled Test Date, Time, Analys
ample Number 2261325-3	Sample Descri 3-08-A LIMED	ption ASH COMPOSITE ; 72°F Iced (Y/N): N	Exceeds recommended	03/08/07 00:00am NA ⁵ F temperature RLs 0.0100 mg/1	Customer Sampled Test Date, Time, Analys 04/12/07 02:30PM GJM
ample Number 2261325-3 arameter	Sample Descri 3-08-A LIMED	ption ASH COMPOSITE : 72°F Iced (Y/N): N Method SM846 Method 6010B SW846 Method 6010B	Exceeds recommended Result ND mg/l ND mg/1	03/08/07 00:00am NA*F temperature RLs 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analys 04/12/07 02:30RM GJM 04/12/07 02:30RM GJM
ample Number 2261325-3 arameter SILVER-TCLP	Sample Descri 3-08-A LIMED	ption ASH COMPOSITE : 72°F load (Y/N): N Method SW846 Method 60108 SW846 Method 60108	Exceeds recommended Result ND mg/1 ND mg/1 0.433 mg/1	03/08/07 00:00am NA ^a F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analyz 04/12/07 02:30PM GJH 04/12/07 02:30PM GJH 04/12/07 02:30PM GJH
ample Number 2261325-3 arameter SILVER-TCLP ARSENIC-TCLP	Sample Descri 3-08-A LIMED	ption ASH COMPOSITE : 72°F Iced (Y/N): N Method SM846 Method 6010B SW846 Method 6010B	Exceeds recommended Result ND mg/l ND mg/1	03/08/07 00:00am NA ⁵ F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analyse 04/12/07 02:30PM GJH 04/12/07 02:30PM GJH 04/12/07 02:30PM GJH
ample Number 2261325-3 arameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP	Sample Descri 3-08-A LIMED	ption ASH COMPOSITE : 72°F	Result ND mg/l ND mg/l ND mg/l 0.433 mg/l 1.88 mg/l ND mg/l	03/08/07 00:00am NA®F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analys 04/12/07 02:30FM GJH
Carple Number 2261325-3 Carameter SILVER-TCLP ARSENIC-TCLP CAPMINH-TCLP CHRONIUM-TCLP MERGURY-TCLP	Sample Descri 3-08-A LIMED	ption ASH COMPOSITE 2: 72°F load (Y/N): N Method SW846 Method 6010B SW846 Method 7470	Result ND mg/l ND mg/l 1.88 mg/l ND mg/l	03/08/07 00:00am NA ^a F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analys 04/12/07 02:30RM GJM 04/11/07 03:20RM GJM
Cample Number 2261325-3 Carameter SILVER-TCLP ARSENIC-TCLP BARIUH-TCLP CARCHIUM-TCLP	Sample Descri 3-08-A LIMED	ption ASH COMPOSITE : 72°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 7470 SW846 Method 5010B	Exceeds recommended Result ND mg/1 ND mg/1 0.433 mg/1 1.88 mg/1 ND mg/1 ND mg/1 1.69 mg/1	03/08/07 00:00am NA ⁵ F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.00100 mg/1 0.00100 mg/1	Customer Sampled Test Date, Time, Analys 04/12/07 02:30FM GJH 04/11/07 03:20FM GJH 04/12/07 02:30FM GJH GJH 04/12/07 02:30FM GJH
ample Number 2261325-3 arameter SILVER-TCLP ARSENIC-TCLP BARIUM-TCLP CARCHIUM-TCLP MERCURY-TCLP LEAD-TCLP LEAD-TCLP SELENIUM-TCLP	Sample Descri 3-08-A LIMED Received Temp	ption ASH COMPOSITE : 72°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 7470 SW846 Method 6010B SW846 Method 6010B SW846 Method 6010B	Result ND mg/1 ND mg/1 0.433 mg/1 1.88 mg/1 ND mg/1	03/08/07 00:00am NA ^a F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analys 04/12/07 02:30PM GJH
Tample Number 2261325-3 Tarameter SILVER-TCLP ARSENIC-TCLP CAPMINH-TCLP CHRONIUM-TCLP MERCURY-TCLP LEAD-TCLP SELENIUM-TCLP TCLP ECHRONIUM-TCLP ECHROCTIO	Sample Descri 3-08-A LIMED Received Temp	ption ASH COMPOSITE 2: 72°F Iced (Y/N): N Method SM846 Method 60108	Result ND mg/l ND mg/l 0.433 mg/l 1.88 mg/l ND mg/l 1.09 mg/l ND mg/l ND mg/l ND mg/l 1.69 mg/l ND mg/l COMPLETE	03/08/07 00:00am NA®F temperature RLs 0.0100 mg/1 0.00100 mg/1 0.0000 mg/1	Customer Sampled Test Date, Time, Analys 04/12/07 02:30RM GJM 04/11/07 03:20RM GJM 04/12/07 02:30RM GJM 03/29/07 01:55RM KDR
arameter SILVER-TCLP ARSENIC-TCLP BARINH-TCLP CARMINH-TCLP CHROMINH-TCLP LEAD-TCLP LEAD-TCLP SELENTIM-TCLP TCLP EXTRACTIO PH-TCLP FINAL	Sample Descri 3-08-A LIMED Received Temp	ption ASH COMPOSITE : 72°F Iced (Y/N): N Method SW846 Method 6010B SW846 Method 5010B SW846 Method 5010B SW846 Method 5010B SW846 Method 1311 EPA 600 Method 130.1	Exceeds recommended Result ND mg/1 ND mg/1 0.433 mg/1 1.88 mg/1 ND mg/1 ND mg/1 1.69 mg/1 ND mg/1 COMPLETE 6.61 units	03/08/07 00:00am NA®F temperature RLs 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0100 mg/1 0.0000 mg/1 0.0000 mg/1 0.0000 mg/1 0.0000 mg/1 0.0100 mg/1	Customer Sampled Test Date, Time, Analyz 04/12/07 02:30RM GJM 04/11/07 02:30RM GJM 04/12/07 02:30RM GJM 04/12/07 02:30RM GJM 03/29/07 01:55RM KOR 03/30/07 08:45RM KOR
Tample Number 2261325-3 Tarameter SILVER-TCLP ARSENIC-TCLP CAPMINH-TCLP CHRONIUM-TCLP MERCURY-TCLP LEAD-TCLP SELENIUM-TCLP TCLP ECHRONIUM-TCLP ECHROCTIO	Sample Descri 3-08-A LIMED Received Temp	ption ASH COMPOSITE 2: 72°F Iced (Y/N): N Method SM846 Method 60108	Result ND mg/l ND mg/l 0.433 mg/l 1.88 mg/l ND mg/l 1.09 mg/l ND mg/l ND mg/l ND mg/l 1.69 mg/l ND mg/l COMPLETE	03/08/07 00:00am NA®F temperature RLs 0.0100 mg/1 0.00100 mg/1 0.0000 mg/1	Customer Sampled Test Date, Time, Analyz 04/12/07 02:30PM GJM 03/29/07 01:55PM KDR

Sample Number Sample Description L2261325-4 3-09-A LIMED ASH COMPOSITE

Samp. Date/Time/Temp 03/09/07 00:00am NA°F

Sampled by Oustoner Sampled

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
 Definitions: ND-not detected; NBC=negative; PCS=positive; CCL=colonies; RLs=laboratory reporting limits; L/R=laboratory accident; TNTC-too numerous to count
 A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.
 All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.
 The test*pH lab"is analysis do neceipt at the laboratory, the result will not be suitable for regulatory purposes.
 Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.
 QC certification ID's: Southampton (NETAP) PADEP 09-131,NUDEP PA166, FL E87954, Bioassay PA034.NON-NETAP labs: Wind Gap-NJ PAD01,Alltest-NJ 02015,Vineland-NJ 06005;PA 68-580.
 All samples are collected as "grab" samples unless otherwise identified.
 MCLF is the EFA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.
 Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection datas and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 2 of 3

			Inv. No:
p: 72*F Totad (Y/N): N	Exceeds recommended temp	erature	
Method	Result	RLs	Test Date, Time, Analyst
SW846 Method 6010B	ND mg/1	0.0100 mg/l	04/12/07 02:27PM GJH
			04/12/07 02:27PM GJH
			04/12/07 02:27PM GJH
			04/12/07 02:278M GJH
			04/12/07 02:27PH GJH
			04/11/07 03:49PM CC
			04/12/07 02:27PM GJH
			04/12/07 02:27PM GJH
		5.5500 mg/1	03/29/07 01:55PM KOR
		0.100 voites	03/30/07 08:45AM KOR
			03/22/07 12:30PM KOR
			03/22/07 08:45AM KOR
	A SOUTHEASTERN CONNECTICUT OF Rp: 72°F Toad (Y/N): N	### SOUTHEASTERN CONNECTICUT COMPANY PART	### SOUTHEASTERN CONNECTICUT COMPANY PMSID No: #### Result Result Result 0.0100 mg/1 0.0100 mg/1 ### SW846 Method 6010B ND mg/1 0.0100 mg/1 ### SW846 Method 6010B ND mg/1 0.0100 mg/1 ### SW846 Method 6010B 0.295 mg/1 0.0100 mg/1 ### SW846 Method 6010B 0.0191 mg/1 0.0100 mg/1 ### SW846 Method 6010B ND mg/1 0.0500 mg/1 ### SW846 Method 150.1 ### EPA 600 Method 150.1 ### EPA 600 Method 150.1 ### EPA 600 Method 150.1 ### SW846 NO METHOD 1.000 mg/1 ### OUNTED 1.000 mg/1 ### OUNTE

L2261325-1:
1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

L2261325-3:
1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

L2261325-4:
1. The TCLP extraction was performed in accordance with 40 CFR parts 261.24 and 268.7.

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
 Definitions: ND-not detected; NEG-negative; PCG-positive; CCL-colonies; RLs-laboratory reporting limits; L/R-laboratory accident; TNTC-too numerous to count
 A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.
 All analysis, except field tests are conducted in Southempton, PA unless otherwise identified.
 The test "pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.
 Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.
 QC certification ID's: Southampton (NELAP) PADEP 09-131,NJDEP FA166, FL E87954, Bicassay PA034.NCN-NELAP labs: Wind Gsp-NJ PA001,Alltest-NJ C2015, Vineland-NJ 06005; PA 68-580.
 All samples are collected as "grab" samples unless otherwise identified.
 MCLe is the EPA recommended "maximum contaminant level" for a parameter. PLs-customer specific permit limits.
 Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 3 of 3

APPENDIX 4

WALLINGFORD RESOURCE RECOVERY FACILITY

- Permit to Operate
- Site Drawing

STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

January 20, 2006

RECEIVED

JAN 25 2006

Mr. Peter W. Egan Director of Environmental Services Connecticut Resources Recovery Authority (CRRA) 100 Constitution Plaza, Hartford, CT 06266 CRRA ENVIRONMENTAL

Mr. Brian Koefe Covanta Projects of Wallingford, L.P. 530 South Cherry Street, Wallingford, CT 06492

Re: Wallingford Resources Recovery Facility (RRF)
Application No. 200301666 for a new Permit to Operate

Dear Messrs. Egan and Keefe:

Please find enclosed a certified copy of the Permit to Operate the Wallingford RRF located at 530 South Cherry Street, Wallingford, CT.

If you have any questions concerning this permit, please contact Calin Tanovici from my staff at 424-3315.

Sincerely,

Sim & Gudak Kim E. Hudak, P.E.

Supervising Sanitary Engineer

Waste Engineering and Enforcement Division

Bureau of Waste Management

Encl:1 KH:ct

(Printed on Recycled Paper)
79 Elm Street • Hartford, CT 06106 - 5127
An Equal Opportunity Employer

STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

PERMIT TO OPERATE

CO-PERMITTEES:

Connecticut Resources Recovery Authority (CRRA)

Covanta Projects of Wallingford, L.P. (CWP)

FACILITY ADDRESS:

530 South Cherry Street, Wallingford, CT 06492

PERMIT No.:

1480694 - PO

Pursuant to Section 22a-208a of the Connecticut General Statutes ("CGS") and Section 22a-209-4 of the Regulations of Connecticut State Agencies ("RCSA"), a PERMIT TO OPERATE IS HEREBY ISSUED by the Commissioner of the Department of Environmental Protection ("Commissioner") to Connecticut Resources Recovery Authority and Covanta Projects of Wallingford, L.P. ("Co-Permittees") for the operation of the Wallingford Resources Recovery Facility located at 530 South Cherry Street, Wallingford, CT. ("Facility").

This permit incorporates and updates all operational conditions specified in the following permits expired on 12/6/2000: Permit to Operate No. 1480153 issued on 10/1/91 and three (3) related minor permit amendments (No. 1480153 issued on 7/30/92; No. 1480153 issued on 2/18/93; and No. 1480321 issued on 12/6/95).

TERMS AND CONDITIONS

As used in this permit, the following definitions apply:

"Bypass Waste" means any solid waste, contractually defined as Acceptable Waste destined for, or received at the Facility, but not processed at the Facility for any reason and which must be disposed of by other means.

"Commissioner" means the Commissioner of the Department of Environmental Protection or the Commissioner's designee.

"Department" means the Department of Environmental Protection.

"Non-ash residue" means any solid waste received at the Facility, but determined by the Co-Permittees to be unsuitable for combustion and which must be disposed of by means other than combustion at the Facility.

(Printed on Recycled Paper)
79 Elm Street * Hartford, CT 06106 - 5127
An Equal Opportunity Employer

"P.E." means a professional engineer licensed to practice in the State of Connecticut.

"Processed Construction and Demolition Wood" means the wood portion of the construction and demolition waste which has been sorted to remove plastics, plaster, gypsum wallboard, asbestos, asphalt shingles, regulated wood fuel as defined in Section 22a-209a of CGS and wood which contains creosote or to which pesticides have been applied or which contains substances defined as hazardous waste under Section 22a-115 of CGS.

"Processing" means the practice by which either the physical characteristics or volume of solid waste accepted at the Facility is being altered through combustion.

"Residue" means bottom ash, air pollution control residue or other residues from the combustion control process.

"Special Waste" includes wastes as defined in RCSA Section 22a-209-1 handled in a manner in conformance with CGS 22a-208y and the Facility's Special Waste Disposal Plan, which may be updated from time to time.

- 2. The Co-Permittees are authorized to operate the Facility in accordance with all applicable documents specified in previous permits issued for the Facility and Application No. 200301666, including attachments thereto and the following documents incorporated herein by reference:
 - a. Application Form, signed by CRRA and CPW.
 - b. Executive Summary. (Attachment A)
 - c. Statement of Consistency with Solid Waste Management Plan (Attachment E)
 - d. A binder incorporating seven (7) related documents regarding various agreements for solid waste disposal at the Facility (part of Attachment G), including a 9/25/01 updated letter of agreement between CRRA and Covanta Energy Corporation (CEC).
 - e. A copy of a 4/9/2000 letter from CRRA to Charles Atkins (part of Attachment G), with four (4) contractual arrangements for handling of ash residue, non-ash residue and by-pass waste.
 - f. Updated organizational charts of CPW and CRRA (part of Attachment G).
 - g. A letter dated 6/8/01 from CPW to the Department explaining the name change from Ogden Projects of Wallingford, L.P. to CPW (part of Attachment G).
 - h. A letter dated 3/21/05 from CRRA to Calin Tanovici (DEP) providing comments related with various operational aspects, including specifications related with the proposed overnight MSW transfer activities and an updated PE certified drawing dated 3/17/05 titled "Exterior Ash Residue Staging Area "D" prepared by HRP Associates, Inc.
 - i. A list of 29 drawings submitted as part of Attachment H.
 - j. A letter dated 9/4/03 from CPW, including the following PE certified drawings:
 - Site Plan (Fig. 1) revised 8/20/03, prepared by HRP Associates.
 - Fire Protection Plan (Fig.2), revised 8/20/03, prepared by HRP Associates.

- k. A letter dated 9/11/03 from CPW, including the following P.E. certified drawings prepared by Nadaskay/Kopelson.
 - A1 Site Plan, Floor Plan & Exterior Elevations (revised 3/17/92).
 - A2 Foundation, Concrete, Framing Plan & Details (revised 3/17/92)
 - A3 Sidewall Framing, Building Section & Details (revised 2/27/92).
- A letter dated 10/20/03 from CPW, including the following P.E. certified documents prepared by Simplex Grinell:
 - FP1 Tipping Area and Receiving Area (Fire Protection) System Calculations, dated 10/7/03.
 - Hydraulic Calculations for Covanta Energy Receiving Area, dated 10/16/03.
 - Hydraulic Calculations for Covanta Energy Tipping Area, dated 10/16/03.
- m. A letter dated 2/13/04 from CPW, including the following P.E. certified drawings:
 - Tipping Floor Storage Plan, revised 2/13/04, prepared by Covanta Engineering Services, showing all operational areas of the tipping floor (TF).
 - Building Floor Plan, revised 2/12/04, prepared by Fluor Engineers, Inc.
- n. An updated Operating and Maintenance Manual, last revised 5/2003 (part of Attachment H).
- o. An updated Environmental Compliance Operating Manual, last revised 5/2001 (part of Attachment H).
- p. A signed Certification Regarding Activities Previously Licensed by DEP (Attachment L).
- q. A binder incorporating a set of seven (7) operational agreements and amendments between CRRA, OPW and CPW (part of Attachment G):
 - (i) Amended and Restated Waste Disposal Contract between CRRA and Wallingford Resources Recovery Associates, L.P., dated 2/1/90.
 - (ii) Amendment #1, dated 10/8/91 between CRRA and OPW.
 - (iii) Amendment #2 (1/24/92) between CRRA and OPW.
 - (iv) Amendment #3, dated 10/31/95 between CRRA and OPW.
 - (v) Amendment #4, dated 9/1/98, between CRRA and OPW.
 - (vi) Letter of Agreement dated 6/5/01 between CRRA and CEC (4 pages).
 - (vii) Updated agreement letter, dated 9/25/01 between CRRA and CEC (consisting of 3 pages + 2 exhibits).

The Co-Permittees shall maintain copies of all documents comprising all data pertaining to the application mentioned in this condition, as well as any supplemental information submitted to the Department in connection with such application. Any inaccuracies found in the information submitted by the Co-Permittees may result in revocation, re-issuance, or modification of this permit and civil or criminal enforcement actions.

3. The Co-Permittees shall comply with all terms and conditions of this permit. This permit consists of the conditions contained herein and the specifications contained in the application documents, except where such specifications are superseded by the more stringent conditions contained herein. Violation of any provision of this permit is subject to enforcement action pursuant, but not limited, to CGS Sections 22a-6, 22a-208, 22a-225 and 22a-226.

-j

- 4. The Co-Permittees shall make no changes to the specifications and requirements of this permit, except in accordance with law.
- 5. The Co-Permittees shall submit for the Commissioner's review and written approval all necessary documentation supporting proposed physical/operational upgrades, improvements and/or minor changes in the Facility design, practices or equipment. A written approval may be issued only if, in Commissioner's judgment, the proposed physical/operational upgrades, improvements and/or minor changes: (a) are deemed necessary for a better and more efficient operation of the Facility; (b) are not significantly changing the nature of the Facility, or its impact on the environment; and (c) does not warrant the issuance of a permit or authorization pursuant to Section 22a-208 of the CGS.
- The Co-Permittees are authorized to operate the Facility in accordance with all applicable law, including this permit.
- 7. The Co-Permittees shall only accept and process at the Facility: (a) municipal solid waste (MSW) as defined in CGS Section 22a-207; (b) Special Waste and/or Processed Construction and Demolition Waste in accordance with a plan approved by the Commissioner pursuant to CGS Section 22a-208y. Hazardous waste shall not be accepted, processed, disposed of or stored at the Facility. Any waste determined as unsuitable for incineration shall be segregated for proper disposal.
- 8. The Co-Permittees shall limit the Facility's processing capacity as described below, based on the combusted waste having a higher heating design value (HHV) indexed at 5,000 BTU/lb.
 - a. The maximum daily tonnage (TPD) of solid waste combusted at the Facility shall not exceed a total of 420 TPD (140 TPD per incinerator/boiler unit), based on 24 hours per day. As necessary, and/or to demonstrate operational compliance, such amount can be further adjusted based on other related operational parameters (i.e. steam flow rate) specified in the permits issued by the Bureau of Air Management.
 - b. In accordance with CGS Section 22a-213(a) and RCSA Section 22a-209-5, all contracts made after July 1, 1971 between the Co-Permittees and any city, town, borough or regional authority to provide for collection, transportation, processing, storage and disposal outside of their boundaries of solid waste generated within its boundaries or any of such services, shall be submitted for Commissioner's review pursuant to CGS Section 22a-213(b). The Commissioner shall not approve long-term contracts exceeding the processing guarantee of 125,216 tona/year (TPY).
 - c. The maximum annual solid waste combusted throughput shall not exceed a total of 153,300 TPY of solid waste accounted as received over the scale, subsequently adjusted for pit and TF storage inventories and other solid waste amounts not combusted (waste unsuitable for incineration; waste transferred off-site; etc.), and measured on a calendar year basis.
 - d. The processing capacities specified in subparagraphs No. 8.a. and No. 8.b. may be adjusted upward or downward based on the ratio of design HHV = 5,000 BTU/lb of solid waste to the measured heating value (BTU/lb) of the incinerated solid waste, as specified in selected sections of the disposal contract identified under condition No. 2.g.(i) of this permit.

9. On-site handling/storage activities shall be in compliance with the following limits and specifications:

a.	3			
	Indoor Storage			
	MSW in the waste pit:	*****	3,704 cy	
	MSW pile in Area "A" of TF [498 sq.yd. x 4.66 yd. (14 ft.) height	-	1,858 cy	
	MSW pile in Area "B" of TF [1,056 sq.yd. x 4.66 yd (14 ft.) heigh	t x 80%]:	3,938 cy	
	Total MSW (includes *600 cy in containers loaded for daily off-site tran	sfer; see cond. No. 9.b.)	9,500 cy	
	Wood fuel pile [Area "C" of TF: 96 sq.yd. x 4.66 yd. (14 ft.) heigh	nt x 80%]:	358 cy	
	Non-ash residues in container(s) located in the "roll-off" area of the		** 60 cy	
	Ash residue in container(s) located in the "roll-off" area of the TF:		** 75 cy	
→>	Ash residue in container(s) located in the ash handling building:		** 75 cy	
	Total indoor storage: Outdoor Storage		10,068 cy	
>	Ash residue (7 containers staged within Area "D"; see condition 1	No. 9.c.):	**525 cy	
	Total on-site storage: Notes: (*) Up to 24 hours storage; (**) Up to 72 hours storage		10,593 cy	
b.	On-site handling and storage activities on the TF, including the daily off-site transfer of MSW, shall comply with the appropriate specifications noted in condition No. 9.a. above and the following:			
	(i) MSW shall be consolidated/stored only in contain spillage.	ners designed to prev	ent leakage a	
	(ii) All MSW handling/loading activities shall be con		•	

- (iii) All MSW loaded containers shall be staged within the TF area and shall be covered before/during off-site transfer.
 - (iv) All MSW loading/transfer activities shall occur only overnight and be completed prior to 7:00 am or the start of the regular morning waste deliveries, whichever is earlier, in order to mitigate any impact on the daily operation on the TF.
 - (v) MSW shall be stored only in the dedicated areas of the TF, as specified in the Tipping Floor Storage Plan drawing noted in condition No. 2.m. of this permit.
 - (vi) All other TF areas, not dedicated for MSW handling/storage activities shall be maintained clean of solid waste and be used solely for solid waste unloading, reloading and truck maneuvering.
 - (vii) The TF's "roll-off" storage area may also be used for other related activities (i.e.: temporary parking of heavy equipment; storage of miscellaneous items/equipment utilized for the operation of the facility; temporary storage in containers of unacceptable waste inadvertently delivered/received and managed in accordance with condition No. 12.c. of this permit).

- c. On-site handling and storage activities related with ash residue shall comply with the appropriate specifications noted in condition No. 9.a. above and the following:
 - (i) Ash residue shall be consolidated/stored only in watertight/sealed containers.
 - (ii) All handling/loading activities shall be confined only to the ash residue building.
 - (iii) All loaded containers shall be staged in dedicated areas within the Facility (on the TF; in the ash loading building; outdoor in the staging Area D) and shall be covered with impervious tarps during their staging outdoors in Area D, as well as before/during off-site transfer.
 - (iv) The outdoor staging Area D shall be monitored daily and cleaned of any spilled ash residue.
- 10. a. On or before 3/1/06 the Co-Permittees shall submit to the Commissioner for review either: (1) a contract for the disposal or recycling of all residue, non-ash residue, and bypass solid waste estimated to be generated at the Facility during the 12/1/05 12/1/10 period; or (2) a plan which demonstrates to the satisfaction of the Commissioner that all residue, non-ash residue, and bypass waste generated at the Facility during such time will be disposed of at a solid waste disposal area which the Co-Permittees owns or operates or exclusively controls for purposes of access and allocation of disposal capacity and which has all authorizations required by law to accept such wastes.
 - b. On or before 12/1/09 and in each fifth year thereafter (2014; 2019; etc.), the Co-Permittees shall submit to the Commissioner for review either: (1) a contract for the disposal or recycling of all residue, non-ash residue, and bypass waste estimated to be generated at the Facility from the end of the period covered by the contract or plan most recently submitted under condition No. 10.a. of this permit through five (5) years after such period, or (2) a plan which demonstrates to the satisfaction of the Commissioner that all residue, non-ash residue, and bypass waste generated at the Facility during such period will be disposed of at a solid waste disposal area which the Co-Permittees owns, operates, or exclusively controls for purposes of access and allocation of disposal capacity and which has all authorizations required by law to accept such wastes.
 - c. The Co-Permittees shall at all times dispose of or recycle all residue, non-ash residue, and bypass waste generated by the Facility in accordance with the most recent contract or plan submitted under condition No. 10.a. of this permit. If at any time the Co-Permittees are unable to dispose of residue, non-ash residue, and/or bypass waste in accordance with said contract or plan, the Co-Permittees shall store such residue, non-ash residue, and bypass waste in accordance with a management plan submitted for Commissioner's review and approval no less than sixty (60) days before such storage first takes place.
- 11. If at any time during operation of the Facility, the available capacity for the disposal of ash residue, non-ash residue, and/or by-pass waste at a designated permitted solid waste disposal area is less than three (3) years, the Co-Permittees shall within 45 days, submit for the Commissioner's review and written approval a plan for uninterrupted disposal of such residue, non-ash residue and bypass waste, including a schedule for implementing said plan.

12. The Co-Permittees shall:

- a. Store solid waste on-site in conformance with proper fire control measures. Routine maintenance and inspections of all fire control equipment shall be conducted in accordance with manufacturer's specifications to ensure their proper function during an emergency occurrence.
- b. Ensure that all solid waste accepted is properly handled on-site, processed, stored and that any non-ash residue, ash residue and bypass waste is transported to markets or other solid waste processing or disposal facilities permitted to accept such solid waste.
- c. Ensure that any unacceptable solid waste inadvertently received, or solid waste which is unsuitable for processing at the Facility is: (1) promptly sorted, separated, isolated and temporarily stored in a safe manner prior to off-site transport; (2) recorded and reported in the quarterly report required by condition No. 17 of this permit; and (3) disposed at a facility lawfully authorized to accept such waste.
- Provide expeditious notification about any emergency incident (explosion, accident, fire, d. release, or other significant disruptive occurrence) which: (1) damages equipment or structure: (2) interrupts the operation of the Facility for greater than 24 hours: (3) results in an unscheduled Facility shutdown or forced diversion of solid waste to other solid waste facilities, (4) could reasonably create a source of pollution to the waters of the state, or (5) otherwise threatens public health. Such notification required under this condition shall: (a) be within 24 hours of the emergency incident or the next business day, whichever is sooner; (b) be verified to the Solid Waste Program in Waste Engineering and Enforcement Division of the Bureau of Waste Management by phone at (860) 424-3366, or at another current publicly published number for the Solid Waste Program, or by facsimile at (860) 424-4059, (c) the notification above shall be followed by a written report within 30 days of the emergency incident detailing the cause and effect of the incident, remedial steps taken and emergency backup used or proposed to be implemented; (d) be recorded in a log. In addition to the notification requirements above, the Co-Permittees shall comply with all other applicable reporting or notification requirements regarding the emergency incident including but not limited to, reporting required by Section 22a-450 of the CGS.
- e. Prevent the spillage of liquids or solids from loaded containers during on-site maneuvering/storage and off-site transport; cover each loaded container before transportation off-site and instruct the haulers to keep such containers covered during off-site transportation. Remove any litter from the Facility's premises on a daily basis.
- f. Operate the Facility in a safe manner and control fire, odor, noise, spills, vectors, litter and dust emissions levels in continuous compliance with all applicable requirements, including OSHA.
- g. Process, store or otherwise handle at the Facility all solid waste received in such a manner as to avoid any spillage, nuisance and protect the public health and the environment.
- h. Maintain at the Facility's premises, and have available for review by the Commissioner, the manufacturer's operation and maintenance manuals for each major piece of fixed processing equipment (e.g. incinerators; air control equipment; tanks; etc.) installed at the Facility.
- 13. The Co-Permittees shall control all traffic related with the operation of the Facility in such a way as to mitigate queuing of vehicles on/off site and excessive or unsafe traffic impact in the area where the Facility is located.

- 14. The Co-Permittees shall ensure that, pursuant to RCSA Section 22a-174-18(b)(3)(C), trucks shall not be left idling for more than three consecutive minutes.
- 15. The Co-Permittees shall have an operator, certified pursuant to Section 22a-209-6 of RCSA, present at all times during Facility operation. All individuals under the supervision of such certified operator shall have sufficient training to identify waste received at the Facility which is not permitted to be received, or is unsuitable for processing, and take proper action in handling such waste.
- 16. Nothing herein authorizes any person, municipality or authority to hinder municipal or regional solid waste recycling efforts. All activities conducted by the Co-Permittees at the Facility shall be in accordance with the documents submitted as part of the application and in compliance with the adopted Connecticut State Solid Waste Management Plan in effect on the issuance date of this permit.
- 17. The Co-Permittees shall maintain daily records as required by Section 22a-209-10 of RCSA and Sections 22a-208e and 22a-220 of CGS. Based on such records, the Co-Permittees shall prepare monthly summaries including, but not limited to, the following information:
 - a. Origin (by municipality), type and quantity of solid waste received.
 - b. Destination type and quantities of by-pass waste, ash and non-ash residues.
 - c. Gross and net amount of steam and electrical energy produced and sold.

The monthly summaries shall be submitted quarterly directly to the Planning, Standards and Remediation Division of the Bureau of Waste Management, no later than January 31, April 30, July 31, October 31, of each year on forms prescribed by the Commissioner.

- 18. The date of submission to the Commissioner of any document required by this permit shall be the date such document is received by the Commissioner. The date of any notice by the Commissioner under this permit, including but not limited to notice of approval or disapproval of any document or other action, shall be the date such notice is personally delivered or the date three days after it is mailed by the Commissioner, whichever is earlier. Any document or action which is due or required on a Saturday, Sunday or a legal state/federal holiday shall be submitted or performed by the next business day thereafter.
- 19. Any document, including, but not limited to any notice, which is required to be submitted to the Commissioner under this permit shall be signed by a duly authorized representative of the Co-Permittees, as defined in Section 22a-430-3(b)(2) of the RCSA, and by the individual or individuals responsible for actually preparing such documents, each of whom shall certify in writing as follows: "I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and certify that based on reasonable investigation, including my inquiry of those individuals responsible for obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and belief, and I understand that any false statement in the submitted information may be punishable as a criminal offense." Any false statement in any document submitted pursuant to this permit may be punishable as a criminal offense in accordance with Section 22a-6 of the CGS, pursuant to Section 53a-157 of the CGS, and in accordance with any other applicable statute.

- 20. This permit is subject to, and in no way derogates from any present or future property rights or other rights or powers of the State of Connecticut and conveys no property rights in real estate or material, nor any exclusive privileges, and is further subject to, any and all public and private rights and to any federal, state or local laws or regulations pertinent to the Facility or activity affected thereby.
- 21. Nothing in this permit shall affect the Commissioner's authority to institute any proceeding or to take any actions to prevent violations of law, prevent or abate pollution, recover costs and natural resource damages, and to impose penalties for violations of law.
- Nothing in this permit shall relieve the Co-Permittees of other obligations under applicable federal, state and local laws.
- 23. To the extent that any term or condition of this permit is deemed to be inconsistent, or in conflict, with any term or condition of Permit to Construct No. 148-5-WP issued on 1/2/86, including any modifications thereto, or with any data or information contained in the application, or any other documents incorporated by reference in this permit, the terms and conditions of this permit shall control and remain enforceable against the Co-Permittees.
- 24. This permit shall expire five (5) years from the date of issuance and may be revoked, suspended, modified, renewed, or transferred in accordance with applicable laws.

Issued on this day of January 2006.


Gina McCarthy
Commissioner

Permit to Operate No. 1480694 -PO

Administrative Note
Application No. 200301666
CRRA - Certified Mail # 7002 2030 0006 5681 7795
CPW - Certified Mail # 7002 2030 0006 5681 7801

Certified to be a true copy of a document in the files of the Department of Environmental Protection, Waste Management Bureau.

January 20, 20

